|
Teoriya Veroyatnostei i ee Primeneniya, 1973, Volume 18, Issue 1, Pages 78–93
(Mi tvp2682)
|
|
|
|
This article is cited in 38 scientific papers (total in 39 papers)
Asymptotical behaviour of some statistical estimators. II. Limiting theorems for the a posteriory density and Bayesian estimators
I. A. Ibragimov, R. Z. Khas'minskii Moscow
Abstract:
In the second part of the paper we use propositions, methods and results of the first part appeared in the previous issue of this journal.
Under conditions I–IV of § 1, we prove theorems about behaviour of the a posteriory density (similar to the well-known Le Cam's results [2]), Bayesian estimators $t_n^{(a)}$ for the risk function $\|\theta\|^a$, Pitman's estimators of the location parameter etc. We prove, for example, that the estimators $t_n^{(a)}$, for different $a\ge1$, are equivalent in the sense that
$$
\mathbf E\{\sqrt n\bigl|t_n^{(a_1)}-t_n^{(a_2)}\bigr|\}^p\underset{n\to\infty}\longrightarrow0\quad(p>0).
$$
Received: 05.01.1971
Citation:
I. A. Ibragimov, R. Z. Khas'minskii, “Asymptotical behaviour of some statistical estimators. II. Limiting theorems for the a posteriory density and Bayesian estimators”, Teor. Veroyatnost. i Primenen., 18:1 (1973), 78–93; Theory Probab. Appl., 18:1 (1973), 76–91
Linking options:
https://www.mathnet.ru/eng/tvp2682 https://www.mathnet.ru/eng/tvp/v18/i1/p78
|
Statistics & downloads: |
Abstract page: | 388 | Full-text PDF : | 137 |
|