|
Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 3, Pages 573–577
(Mi tvp2670)
|
|
|
|
Short Communications
On estimating functions of the mean
A. S. Kholevo Moscow
Abstract:
An estimation problem is considered for a function $\varphi(\alpha_1,\dots,\alpha_N)$ of unknown complex parameters $\alpha_1,\dots,\alpha_N$ by observations $\xi(t)=\alpha_1\theta_1(t)+\dots+\alpha_N\theta_N(t)+\Delta(t)$, $t\in T$, where $\Delta(t)$ is complex Gaussian stochastic function.
The main result is: the best unbiased estimate of an analytic function $\varphi(\alpha_1,\dots,\alpha_N)$ is $\varphi(\widehat\alpha_1,\dots,\widehat\alpha_N)$ where $\widehat\alpha_k$ are the BLUE of regression coeffitients $\alpha_k$. The real-valued case and the case of infinite dimensional regression are briefly discussed.
Received: 07.07.1970
Citation:
A. S. Kholevo, “On estimating functions of the mean”, Teor. Veroyatnost. i Primenen., 17:3 (1972), 573–577; Theory Probab. Appl., 17:3 (1973), 543–547
Linking options:
https://www.mathnet.ru/eng/tvp2670 https://www.mathnet.ru/eng/tvp/v17/i3/p573
|
Statistics & downloads: |
Abstract page: | 217 | Full-text PDF : | 92 |
|