|
Teoriya Veroyatnostei i ee Primeneniya, 1979, Volume 24, Issue 3, Pages 632–636
(Mi tvp2653)
|
|
|
|
Short Communications
Probability inequalities for series of independent random variables
S. N. Antonov Gorky
Abstract:
Let $\xi_k$ ($k=1,2,\dots$) be independent random variables, $\mathbf E\xi_k=0$, $\mathbf D\xi_k=1$. The
probability inequalities are obtained for the sum $\xi$ of the series $\displaystyle\sum_{k=1}^{\infty}a_k\xi_k$. The theorem 1 states that
$$
\mathbf P\{|\xi|\ge x\}\le 2\,\exp\{-C_{\lambda} x^{\lambda/(\lambda-1)}\}
$$
if the summands have «a large value with a small probabilities» and $\displaystyle\sum_{k=1}^{\infty}|a_k|^{\lambda}<\infty$ ($1<\lambda\le 2$). The theorem 2 ascertains the accuracy of bound (1): the exponent $\lambda/(\lambda-1)$ of $x$ cannot be more than $\beta/(\beta-1)$ if the exponent of convergence of sequence $\{a_k\}$ equals to $\beta$.
Received: 07.12.1977
Citation:
S. N. Antonov, “Probability inequalities for series of independent random variables”, Teor. Veroyatnost. i Primenen., 24:3 (1979), 632–636; Theory Probab. Appl., 24:3 (1980), 636–640
Linking options:
https://www.mathnet.ru/eng/tvp2653 https://www.mathnet.ru/eng/tvp/v24/i3/p632
|
|