|
Teoriya Veroyatnostei i ee Primeneniya, 1979, Volume 24, Issue 3, Pages 574–579
(Mi tvp2642)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Short Communications
On the conditions when the cylindrical measure on cojugate Banach space may be extended to Radon measure
Yu. N. Vladimirskiĭ Kostroma
Abstract:
In an arbitrary Banach space $E$ we define the local convex topologies $t_N(E)\ge t_S(E)$. Let $\lambda$ be an arbitrary cylindrical probability on $E'$. We prove that continuity of $\lambda$ with respect to $t_N(E)$ ($t_S(E)$) is a necessary (sufficient) condition for $\lambda$ may be extended to a Radon measure on $E'$. If $E$ is Hilbertian then the topologies $t_N(E)$ and $t_S(E)$ are identical to $J$-topology introduced by V. V. Sazonov. Conversely, if $t_N(E)=t_S(E)$ then $E$ is Hilbertian.
Received: 03.03.1977
Citation:
Yu. N. Vladimirskiǐ, “On the conditions when the cylindrical measure on cojugate Banach space may be extended to Radon measure”, Teor. Veroyatnost. i Primenen., 24:3 (1979), 574–579; Theory Probab. Appl., 24:3 (1980), 582–587
Linking options:
https://www.mathnet.ru/eng/tvp2642 https://www.mathnet.ru/eng/tvp/v24/i3/p574
|
Statistics & downloads: |
Abstract page: | 166 | Full-text PDF : | 72 |
|