Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1979, Volume 24, Issue 3, Pages 574–579 (Mi tvp2642)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

On the conditions when the cylindrical measure on cojugate Banach space may be extended to Radon measure

Yu. N. Vladimirskiĭ

Kostroma
Full-text PDF (518 kB) Citations (2)
Abstract: In an arbitrary Banach space $E$ we define the local convex topologies $t_N(E)\ge t_S(E)$. Let $\lambda$ be an arbitrary cylindrical probability on $E'$. We prove that continuity of $\lambda$ with respect to $t_N(E)$ ($t_S(E)$) is a necessary (sufficient) condition for $\lambda$ may be extended to a Radon measure on $E'$. If $E$ is Hilbertian then the topologies $t_N(E)$ and $t_S(E)$ are identical to $J$-topology introduced by V. V. Sazonov. Conversely, if $t_N(E)=t_S(E)$ then $E$ is Hilbertian.
Received: 03.03.1977
English version:
Theory of Probability and its Applications, 1980, Volume 24, Issue 3, Pages 582–587
DOI: https://doi.org/10.1137/1124067
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. N. Vladimirskiǐ, “On the conditions when the cylindrical measure on cojugate Banach space may be extended to Radon measure”, Teor. Veroyatnost. i Primenen., 24:3 (1979), 574–579; Theory Probab. Appl., 24:3 (1980), 582–587
Citation in format AMSBIB
\Bibitem{Vla79}
\by Yu.~N.~Vladimirski{\v\i}
\paper On the conditions when the cylindrical measure on cojugate Banach space may be extended to Radon measure
\jour Teor. Veroyatnost. i Primenen.
\yr 1979
\vol 24
\issue 3
\pages 574--579
\mathnet{http://mi.mathnet.ru/tvp2642}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=541369}
\zmath{https://zbmath.org/?q=an:0435.60009|0408.60005}
\transl
\jour Theory Probab. Appl.
\yr 1980
\vol 24
\issue 3
\pages 582--587
\crossref{https://doi.org/10.1137/1124067}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1979KT89400011}
Linking options:
  • https://www.mathnet.ru/eng/tvp2642
  • https://www.mathnet.ru/eng/tvp/v24/i3/p574
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:166
    Full-text PDF :72
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024