|
Teoriya Veroyatnostei i ee Primeneniya, 1979, Volume 24, Issue 3, Pages 475–485
(Mi tvp2633)
|
|
|
|
This article is cited in 17 scientific papers (total in 17 papers)
Asymptotic, analysis of the distributions in problems with two boundaries. I
V. I. Lotov Novosibirsk
Abstract:
Let $\{\xi_k\}_{k=1}^{\infty}$ be a sequence of i. i. d. integer valued random variables,
$\mathbf M\xi_i=0$, $S_n=\xi_1+\dots+\xi_n\ (S_0=0)$, and the function
$\mathbf M(\lambda^{\xi_1}\colon\xi_1>0)$ is rational. For $a>0$, $b>0$ we introduce the random variable
$$
N=\min\{k\colon S_k\notin[-a,b)\}.
$$
The complete asymptotic (as $n\to\infty$) expansions of the probabilities
$$
\mathbf P\{S_n=k,\ N>n\},\ k\in[-a,b),\quad
\mathbf P\{S_N=k,\ N=n\},\ k\notin[-a,b),
$$
are obtained for $a=a(n)=o(n)$, $b=b(n)=o(n)$, $a\to\infty$, $b\to\infty$, $a+b\ge C\sqrt n$.
Received: 04.07.1977
Citation:
V. I. Lotov, “Asymptotic, analysis of the distributions in problems with two boundaries. I”, Teor. Veroyatnost. i Primenen., 24:3 (1979), 475–485; Theory Probab. Appl., 24:3 (1980), 480–491
Linking options:
https://www.mathnet.ru/eng/tvp2633 https://www.mathnet.ru/eng/tvp/v24/i3/p475
|
Statistics & downloads: |
Abstract page: | 262 | Full-text PDF : | 115 |
|