Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1997, Volume 42, Issue 4, Pages 820–826
DOI: https://doi.org/10.4213/tvp2611
(Mi tvp2611)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

A game with optimal stopping of random walks

V. V. Mazalov, È. A. Kochetov

Chita Institute of Natural Resources SB RAS
Full-text PDF (332 kB) Citations (1)
Abstract: A two-person game $\Gamma$ is considered which is specified by the following random walks. Let $x_n$ and $y_n$ be independent symmetric random walks on the set $E=\{0,1,\ldots,K\}$. Assume they start from the states $a$ and $b$ respectively $(1\le a < b\le K-1)$, are absorbed with probability $0.5$ at points $0$ and $K$, and are reflected to the points $1$ and $K-1$, respectively, with the same probability $0.5$. Players I and II observe the random walks $x_n$ and $y_n$, respectively, and stop them at Markov times $\tau $ and $\sigma$ being strategies of the game. Each player knows the values of $K, a$, and $b$ but has no information about the behavior of the other player.
The rules of the game are as follows. If $x_{\tau} > y_{\sigma}$ then player II pays player I, say, \$1; if $x_{\tau} < y_{\sigma}$ then I pays II \$1; and if $x_{\tau}=y_{\sigma}$ then the outcome of the game is said to be a draw. The aim of each player is to maximize the expected value of hisincome.
We find the equilibrium situation and the value of the game.
Keywords: random walk, reflecting barriers, strategy, stopping time, spectrum, equilibrium situation.
Received: 31.07.1996
English version:
Theory of Probability and its Applications, 1998, Volume 42, Issue 4, Pages 697–701
DOI: https://doi.org/10.1137/S0040585X97976556
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Mazalov, È. A. Kochetov, “A game with optimal stopping of random walks”, Teor. Veroyatnost. i Primenen., 42:4 (1997), 820–826; Theory Probab. Appl., 42:4 (1998), 697–701
Citation in format AMSBIB
\Bibitem{MazKoc97}
\by V.~V.~Mazalov, \`E.~A.~Kochetov
\paper A~game with optimal stopping of~random walks
\jour Teor. Veroyatnost. i Primenen.
\yr 1997
\vol 42
\issue 4
\pages 820--826
\mathnet{http://mi.mathnet.ru/tvp2611}
\crossref{https://doi.org/10.4213/tvp2611}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1618770}
\zmath{https://zbmath.org/?q=an:0918.60057}
\transl
\jour Theory Probab. Appl.
\yr 1998
\vol 42
\issue 4
\pages 697--701
\crossref{https://doi.org/10.1137/S0040585X97976556}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000079809500014}
Linking options:
  • https://www.mathnet.ru/eng/tvp2611
  • https://doi.org/10.4213/tvp2611
  • https://www.mathnet.ru/eng/tvp/v42/i4/p820
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024