Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 4, Pages 828–834
DOI: https://doi.org/10.4213/tvp261
(Mi tvp261)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

Conditional zero-one laws

K. Hess

Technische Universität Dresden
Full-text PDF (804 kB) Citations (1)
References:
Abstract: We say that a class of events fulfills a conditional zero-one law if it is a subset of the completion of the conditioning $\sigma$-algebra. In this case the conditional probability of an event of the class is an indicator function. Therefore the conditional probability takes almost surely only the values zero and one; in the unconditional case the indicator functions are almost surely constant.
We consider two special zero-one laws. If a sequence of random variables is conditionally independent, then its tail $\sigma$-algebra fulfills a conditional zero-one law; this generalizes Kolmogorov's zero-one law. If the sequence is even conditionally identically distributed, then its permutable $\sigma$-algebra, which contains the tail $\sigma$-algebra, fulfills a conditional zero-one law; this generalizes the zero-one law of Hewitt and Savage.
Keywords: conditional probability, conditional independence, zero-one law.
Received: 02.06.2000
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 4, Pages 711–718
DOI: https://doi.org/10.1137/S0040585X97980804
Bibliographic databases:
Document Type: Article
Language: English
Citation: K. Hess, “Conditional zero-one laws”, Teor. Veroyatnost. i Primenen., 48:4 (2003), 828–834; Theory Probab. Appl., 48:4 (2004), 711–718
Citation in format AMSBIB
\Bibitem{Hes03}
\by K.~Hess
\paper Conditional zero-one laws
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 4
\pages 828--834
\mathnet{http://mi.mathnet.ru/tvp261}
\crossref{https://doi.org/10.4213/tvp261}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2142529}
\zmath{https://zbmath.org/?q=an:1066.60039}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 4
\pages 711--718
\crossref{https://doi.org/10.1137/S0040585X97980804}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226305500010}
Linking options:
  • https://www.mathnet.ru/eng/tvp261
  • https://doi.org/10.4213/tvp261
  • https://www.mathnet.ru/eng/tvp/v48/i4/p828
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024