Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 2, Pages 380–383 (Mi tvp2605)  

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

A generalization of an ergodic theorem of Hopf

A. A. Tempel'man

Institute of Physics and Mathematics, Academy of Sciences, Lithuanian SSR
Full-text PDF (272 kB) Citations (1)
Abstract: Let $X$ be a separable locally compact semigroup; let($\Omega$, $\mathfrak G$, $m$) be a space with a $\sigma$-finite measure $m$ and let $T_x$, $x\in X$, be a dynamic system in $\Omega$ with “time” from $X$. Let, further, $p$ and $q$ be probability Borel measures on $X$ and $\lambda_n=\sum_{k=0}^np*q^{*k}$. If $f$, $g\in L_1(m)$ and $g>0$ then the limit
$$ \lim_{n\to\infty}\int_Xf(T_x\omega)\lambda_n(dx)\bigg/\int_Xg(T_x\omega)\lambda_n(dx)=h_{f,g}(\omega) $$
is shown to exist almost everywhere on $\Omega$.
$(p,q)$-conservative dynamic systems are defined as systems inducing recurrent random walks in $\Omega$ in correspondence with the measures $p$ and $q$. For such dynamic systems the equality $h_{f,g}=\mathbf E(f\mid\mathfrak F)$ is proved where $\mathbf E(f\mid\mathfrak F)$ is the conditional expectation of the function $f(\omega)$ given the $\sigma$-algebra $\mathfrak F$ of measurable invariant sets.
Received: 21.07.1970
English version:
Theory of Probability and its Applications, 1973, Volume 17, Issue 2, Pages 363–365
DOI: https://doi.org/10.1137/1117043
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Tempel'man, “A generalization of an ergodic theorem of Hopf”, Teor. Veroyatnost. i Primenen., 17:2 (1972), 380–383; Theory Probab. Appl., 17:2 (1973), 363–365
Citation in format AMSBIB
\Bibitem{Tem72}
\by A.~A.~Tempel'man
\paper A~generalization of an ergodic theorem of Hopf
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 2
\pages 380--383
\mathnet{http://mi.mathnet.ru/tvp2605}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=301169}
\zmath{https://zbmath.org/?q=an:0265.28008}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 2
\pages 363--365
\crossref{https://doi.org/10.1137/1117043}
Linking options:
  • https://www.mathnet.ru/eng/tvp2605
  • https://www.mathnet.ru/eng/tvp/v17/i2/p380
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024