Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1981, Volume 26, Issue 3, Pages 564–573 (Mi tvp2601)  

This article is cited in 3 scientific papers (total in 3 papers)

On a statistical problem connected with a random walk

M. V. Burnašev

Moscow
Full-text PDF (628 kB) Citations (3)
Abstract: Let $Z^d$ be a $d$-dimensional lattice and $P(0,z)$, $z\in Z^d$, be given transition function of a random walk. If there is no particle on the lattice (hypothesis $H_0$) we observe independent gaussian noises at each moment $t=0,1,\dots$ for every $z\in Z^d$. If there is a particle on the lattice (hypothesis $H_1$) then it moves according to a random walk with the transition function $P(0,z)$ and we observe the additional constant signal $\mu$ at each moment for the point where the particle is situated. For what $P(0,z)$ and $\mu$ is it possible to test the hypotheses $H_0$ and $H_1$ without error for infinite time of observation? We show that for $d=1$ and for $d=2$ it is possible to distinguish $H_0$ and $H_1$ for any $\mu\ne 0$, but for $d\ge 3$ there exists a «critical» value $\mu_0$ of $|\mu|$. Some lower and upper bounds for $\mu_0$ are obtained.
Received: 07.05.1979
English version:
Theory of Probability and its Applications, 1982, Volume 26, Issue 3, Pages 554–563
DOI: https://doi.org/10.1137/1126060
Bibliographic databases:
Language: Russian
Citation: M. V. Burnašev, “On a statistical problem connected with a random walk”, Teor. Veroyatnost. i Primenen., 26:3 (1981), 564–573; Theory Probab. Appl., 26:3 (1982), 554–563
Citation in format AMSBIB
\Bibitem{Bur81}
\by M.~V.~Burna{\v s}ev
\paper On a~statistical problem connected with a~random walk
\jour Teor. Veroyatnost. i Primenen.
\yr 1981
\vol 26
\issue 3
\pages 564--573
\mathnet{http://mi.mathnet.ru/tvp2601}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=627862}
\zmath{https://zbmath.org/?q=an:0499.62071|0474.62081}
\transl
\jour Theory Probab. Appl.
\yr 1982
\vol 26
\issue 3
\pages 554--563
\crossref{https://doi.org/10.1137/1126060}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981PA76400009}
Linking options:
  • https://www.mathnet.ru/eng/tvp2601
  • https://www.mathnet.ru/eng/tvp/v26/i3/p564
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :114
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024