Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2006, Volume 51, Issue 4, Pages 785–793
DOI: https://doi.org/10.4213/tvp26
(Mi tvp26)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes

V. F. Gaposhkin

Moscow State University of Railway Communications
Full-text PDF (860 kB) Citations (1)
References:
Abstract: Estimates of the $\varepsilon$-entropy of the set of arithmetic averages for an $R$-quasi-stationary system are obtained depending on the decay rate of the function $R(n)$. It is shown that the deduced estimates are the best in order as $\varepsilon\to+0$.
Keywords: stationary and quasi-stationary sequences, $R$-systems, arithmetic average, $\varepsilon$-entropy of the sets of arithmetic averages, upper and lower estimates.
Received: 15.06.2005
Revised: 15.05.2006
English version:
Theory of Probability and its Applications, 2007, Volume 51, Issue 4, Pages 695–704
DOI: https://doi.org/10.1137/S0040585X97982724
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. F. Gaposhkin, “Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes”, Teor. Veroyatnost. i Primenen., 51:4 (2006), 785–793; Theory Probab. Appl., 51:4 (2007), 695–704
Citation in format AMSBIB
\Bibitem{Gap06}
\by V.~F.~Gaposhkin
\paper Precise estimates of the metric entropy for the set of arithmetic averages of quasi-stationary processes
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 4
\pages 785--793
\mathnet{http://mi.mathnet.ru/tvp26}
\crossref{https://doi.org/10.4213/tvp26}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338068}
\zmath{https://zbmath.org/?q=an:1140.60018}
\elib{https://elibrary.ru/item.asp?id=9310063}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 4
\pages 695--704
\crossref{https://doi.org/10.1137/S0040585X97982724}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251875600009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38149131338}
Linking options:
  • https://www.mathnet.ru/eng/tvp26
  • https://doi.org/10.4213/tvp26
  • https://www.mathnet.ru/eng/tvp/v51/i4/p785
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024