Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 4, Pages 793–800
DOI: https://doi.org/10.4213/tvp257
(Mi tvp257)
 

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

Second-order asymptotic behavior of subexponential infinitely divisible distributions

A. Baltrūnasa, A. L. Yakymivb

a Institute of Mathematics and Informatics
b Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (685 kB) Citations (1)
References:
Abstract: In this paper, a new way to obtain the rate of convergence for subexponential infinitely divisible distributions is proposed. Namely, for the subexponential infinitely divisible distribution function $H(x)$ with the Lévy measure $\mu ,$ the estimate of difference
$$ 1-H(x)-\mu((x,\infty)) $$
as $x\to\infty $ has been obtained.
Keywords: infinitely divisible distributions, Lévy measure, subexponential distributions, dominated variation, $RO$-varying functions.
Received: 30.01.2002
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 4, Pages 703–710
DOI: https://doi.org/10.1137/S0040585X97980762
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Baltrūnas, A. L. Yakymiv, “Second-order asymptotic behavior of subexponential infinitely divisible distributions”, Teor. Veroyatnost. i Primenen., 48:4 (2003), 793–800; Theory Probab. Appl., 48:4 (2004), 703–710
Citation in format AMSBIB
\Bibitem{BalYak03}
\by A.~Baltr{\=u}nas, A.~L.~Yakymiv
\paper Second-order asymptotic behavior of subexponential
infinitely divisible distributions
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 4
\pages 793--800
\mathnet{http://mi.mathnet.ru/tvp257}
\crossref{https://doi.org/10.4213/tvp257}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2142525}
\zmath{https://zbmath.org/?q=an:1058.60011}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 4
\pages 703--710
\crossref{https://doi.org/10.1137/S0040585X97980762}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226305500009}
Linking options:
  • https://www.mathnet.ru/eng/tvp257
  • https://doi.org/10.4213/tvp257
  • https://www.mathnet.ru/eng/tvp/v48/i4/p793
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:499
    Full-text PDF :181
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024