Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2009, Volume 54, Issue 1, Pages 170–180
DOI: https://doi.org/10.4213/tvp2553
(Mi tvp2553)
 

This article is cited in 7 scientific papers (total in 7 papers)

Lower Bounds for Accuracy of Estimation in Diffusion Tensor Imaging

L. A. Sakhanenko

University of New Mexico
Full-text PDF (172 kB) Citations (7)
References:
Abstract: A vector field is observed at random locations with additive noise. The corresponding integral curve is to be estimated based on the data. The focus of the current paper is to obtain lower bounds for the functions of deviations between true and estimated integral curves. In particular, we show that the estimation procedure in [Koltchinskii, Sakhanenko, and Cai, Ann. Statist., 35 (2007), pp. 1576–1607] yields estimates, which have the optimal rate of convergence in a minimax sense. Overall, this work is motivated by diffusion tensor imaging, which is a modern brain imaging technique. The integral curves are used to model axonal fibers in the brain. In medical research, it is important to estimate and map these fibers. The paper addresses statistical aspects pertinent to such an estimation problem.
Keywords: local asymptotic normality, optimal rate of convergence, diffusion tensor imaging.
Received: 28.08.2008
English version:
Theory of Probability and its Applications, 2010, Volume 54, Issue 1, Pages 168–177
DOI: https://doi.org/10.1137/S0040585X97984085
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: L. A. Sakhanenko, “Lower Bounds for Accuracy of Estimation in Diffusion Tensor Imaging”, Teor. Veroyatnost. i Primenen., 54:1 (2009), 170–180; Theory Probab. Appl., 54:1 (2010), 168–177
Citation in format AMSBIB
\Bibitem{Sak09}
\by L.~A.~Sakhanenko
\paper Lower Bounds for Accuracy of Estimation in Diffusion Tensor Imaging
\jour Teor. Veroyatnost. i Primenen.
\yr 2009
\vol 54
\issue 1
\pages 170--180
\mathnet{http://mi.mathnet.ru/tvp2553}
\crossref{https://doi.org/10.4213/tvp2553}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2766654}
\zmath{https://zbmath.org/?q=an:05771299}
\transl
\jour Theory Probab. Appl.
\yr 2010
\vol 54
\issue 1
\pages 168--177
\crossref{https://doi.org/10.1137/S0040585X97984085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276689500013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77749338829}
Linking options:
  • https://www.mathnet.ru/eng/tvp2553
  • https://doi.org/10.4213/tvp2553
  • https://www.mathnet.ru/eng/tvp/v54/i1/p170
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024