Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 4, Pages 766–784
DOI: https://doi.org/10.4213/tvp255
(Mi tvp255)
 

Régularité ergodique de quelques classes de Donsker

M. Weber

Institut de Recherche Mathématique Avancée, Université de Strasbourg
References:
Abstract: We use a weak decoupling inequality in ergodic theory for maximal operators. We apply this inequality to the study of the property for a set of functions to be a Donsker class. The sets we examine are built from a sequence of $L^2$-operators and naturally appear in the study of the almost sure regularity properties of these. We obtain new individual necessary conditions (for a given $f\in L^2(\mu)$) and new global necessary conditions. The latter conditions are of uniform type and have a natural translation on the regularity properties of the canonical Gaussian process $Z$ defined on $L^2(\mu)$.
Keywords: ergodic maximal operator, almost sure convergence, Gaussian processes, decoupling inequality, entropy numbers.
Received: 15.10.2002
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 4, Pages 681–696
DOI: https://doi.org/10.1137/S0040585X97980749
Bibliographic databases:
Language: French
Citation: M. Weber, “Régularité ergodique de quelques classes de Donsker”, Teor. Veroyatnost. i Primenen., 48:4 (2003), 766–784; Theory Probab. Appl., 48:4 (2004), 681–696
Citation in format AMSBIB
\Bibitem{Web03}
\by M.~Weber
\paper R\'egularit\'e ergodique de quelques classes de Donsker
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 4
\pages 766--784
\mathnet{http://mi.mathnet.ru/tvp255}
\crossref{https://doi.org/10.4213/tvp255}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2142523}
\zmath{https://zbmath.org/?q=an:1064.60053}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 4
\pages 681--696
\crossref{https://doi.org/10.1137/S0040585X97980749}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226305500007}
Linking options:
  • https://www.mathnet.ru/eng/tvp255
  • https://doi.org/10.4213/tvp255
  • https://www.mathnet.ru/eng/tvp/v48/i4/p766
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :148
    References:64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024