|
Régularité ergodique de quelques classes de Donsker
M. Weber Institut de Recherche Mathématique Avancée, Université de Strasbourg
Abstract:
We use a weak decoupling inequality in ergodic theory for maximal operators. We apply this inequality to the study of the property for a set of functions to be a Donsker class. The sets we examine are built from a sequence of $L^2$-operators and naturally appear in the study of the almost sure regularity properties of these. We obtain new individual necessary conditions (for a given $f\in L^2(\mu)$) and new global necessary conditions. The latter conditions are of uniform type and have a natural translation on the regularity properties of the canonical Gaussian process $Z$ defined on $L^2(\mu)$.
Keywords:
ergodic maximal operator, almost sure convergence, Gaussian processes, decoupling inequality, entropy numbers.
Received: 15.10.2002
Citation:
M. Weber, “Régularité ergodique de quelques classes de Donsker”, Teor. Veroyatnost. i Primenen., 48:4 (2003), 766–784; Theory Probab. Appl., 48:4 (2004), 681–696
Linking options:
https://www.mathnet.ru/eng/tvp255https://doi.org/10.4213/tvp255 https://www.mathnet.ru/eng/tvp/v48/i4/p766
|
Statistics & downloads: |
Abstract page: | 298 | Full-text PDF : | 148 | References: | 64 |
|