Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2009, Volume 54, Issue 1, Pages 80–96
DOI: https://doi.org/10.4213/tvp2547
(Mi tvp2547)
 

This article is cited in 2 scientific papers (total in 2 papers)

Optimal Stopping of Integral Functionals and a “No-Loss” Free Boundary Formulation

D. V. Belomestnya, L. Rüschendorfa, M. A. Urusovb

a Albert Ludwigs University of Freiburg
b M. V. Lomonosov Moscow State University
Full-text PDF (215 kB) Citations (2)
References:
Abstract: This paper is concerned with a modification of the classical formulation of the free boundary problem for the optimal stopping of integral functionals of one-dimensional diffusions with, possibly, irregular coefficients. This modification was introduced in [L. Rüschendorf and M. A. Urusov, Ann. Appl. Probab., 18 (2008), pp. 847–878]. As a main result of that paper a verification theorem was established. Solutions of the modified free boundary problem imply solutions of the optimal stopping problem. The main contribution of this paper is to establish the converse direction. Solutions of the optimal stopping problem necessarily also solve the modified free boundary problem. Thus the modified free boundary problem is also necessary and does not “lose” solutions. In particular, we prove smooth fit in our situation. In the final part of this paper we discuss related questions for the viscosity approach and describe an advantage of the modified free boundary formulation.
Keywords: optimal stopping, free boundary problem, one-dimensional diffusion, Engelbert–Schmidt conditions, local times, occupation times formula, Itô–Tanaka formula, viscosity solution of a one-dimensional ODE of second order.
Received: 18.02.2008
English version:
Theory of Probability and its Applications, 2010, Volume 54, Issue 1, Pages 14–28
DOI: https://doi.org/10.1137/S0040585X97983961
Bibliographic databases:
Document Type: Article
Language: English
Citation: D. V. Belomestny, L. Rüschendorf, M. A. Urusov, “Optimal Stopping of Integral Functionals and a “No-Loss” Free Boundary Formulation”, Teor. Veroyatnost. i Primenen., 54:1 (2009), 80–96; Theory Probab. Appl., 54:1 (2010), 14–28
Citation in format AMSBIB
\Bibitem{BelRusUru09}
\by D.~V.~Belomestny, L.~R\"uschendorf, M.~A.~Urusov
\paper Optimal Stopping of Integral Functionals and a ``No-Loss'' Free Boundary Formulation
\jour Teor. Veroyatnost. i Primenen.
\yr 2009
\vol 54
\issue 1
\pages 80--96
\mathnet{http://mi.mathnet.ru/tvp2547}
\crossref{https://doi.org/10.4213/tvp2547}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2766648}
\transl
\jour Theory Probab. Appl.
\yr 2010
\vol 54
\issue 1
\pages 14--28
\crossref{https://doi.org/10.1137/S0040585X97983961}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276689500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77749346059}
Linking options:
  • https://www.mathnet.ru/eng/tvp2547
  • https://doi.org/10.4213/tvp2547
  • https://www.mathnet.ru/eng/tvp/v54/i1/p80
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:364
    Full-text PDF :173
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024