Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 2, Pages 281–295 (Mi tvp2529)  

This article is cited in 30 scientific papers (total in 30 papers)

Some problems concerning stability under small stochastic perturbations

A. D. Venttsel', M. I. Freidlin

Moscow
Abstract: Let $x_0$ be a stable equilibrium point of a dynamic system $\dot x=b(x)$ in $R^r$; a Markov stochastic process $x_t^\varepsilon$ appears as a result of small stochastic perturbations of this system: $dx_t^\varepsilon=b(x_t^\varepsilon)\,dt+\varepsilon\sigma(x_t^\varepsilon)\,d\xi_t$ where $\xi_t$ is a Wiener process. Problems concerning stability of the point $x_0$ with respect to the stochastic process $x_t^\varepsilon$ are considered.
All trajectories of the process $x_t^\varepsilon$ sooner or later, leave each neighbourhood of the equilibrium point. The problem arises how to choose a region of a given area for which the mean exit time is maximum? Another problem setting: suppose that one can control the process $x_t^\varepsilon$ by chosing a drift vector $b(x)$ at each point $x$ of some set of vectors $\Pi(x)$. How should one control the process so that the mean exit time of a given region would be maximum (minimum)? Asymptotically optimal solutions to these questions are given: the control proposed by the authors is not worse (not essentially worse) than any other control if $\varepsilon$ is sufficiently small; the mean exit time of any other region $G$ of a given area is less than that of the region the authors point at if $\varepsilon$ is small.
The way of solving these problems is to estimate the main term of the mean exit time of a given region $G$ when $\varepsilon\to0$. This main term is $\exp\Bigl\{\frac1{2\varepsilon^2}\min\limits_{y\in\partial G}V(x_0,y)\Bigr\}$ where $V(x_0,x)$ is a function that does not depend on the region and can be found as a solution of a specific problem for the differential equation
$$ \sum a^{ij}(x)\frac{\partial V}{\partial x^i}\frac{\partial V}{\partial x^j}+4\sum b^i(x)\frac{\partial V}{\partial x^i}=0,\quad(a^{ij}(x))=\sigma(x)\sigma^*(x). $$
In order to solve the optimal control problem, a non-linear partial differential equation is considered. In the case of shift-invariance this equation can be solved by means of a certain geometrical construction.
Received: 23.07.1970
English version:
Theory of Probability and its Applications, 1973, Volume 17, Issue 2, Pages 269–283
DOI: https://doi.org/10.1137/1117031
Bibliographic databases:
Language: Russian
Citation: A. D. Venttsel', M. I. Freidlin, “Some problems concerning stability under small stochastic perturbations”, Teor. Veroyatnost. i Primenen., 17:2 (1972), 281–295; Theory Probab. Appl., 17:2 (1973), 269–283
Citation in format AMSBIB
\Bibitem{VenFre72}
\by A.~D.~Venttsel', M.~I.~Freidlin
\paper Some problems concerning stability under small stochastic perturbations
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 2
\pages 281--295
\mathnet{http://mi.mathnet.ru/tvp2529}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=298155}
\zmath{https://zbmath.org/?q=an:0268.93032}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 2
\pages 269--283
\crossref{https://doi.org/10.1137/1117031}
Linking options:
  • https://www.mathnet.ru/eng/tvp2529
  • https://www.mathnet.ru/eng/tvp/v17/i2/p281
  • This publication is cited in the following 30 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :116
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024