Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 2, Pages 253–265 (Mi tvp2526)  

This article is cited in 19 scientific papers (total in 19 papers)

Asymptotic formulas for the probability of k-connectedness of random graphs

A. K. Kel'mans

Moscow
Abstract: For graphs with vertices of sufficiently large, in a certain sense, degrees, asymptotical formulas are derived for the probability of k-connectedness of vertex subsets provided the edges of graphs are removed independently with given probabilities.
Received: 22.07.1970
English version:
Theory of Probability and its Applications, 1973, Volume 17, Issue 2, Pages 243–254
DOI: https://doi.org/10.1137/1117029
Bibliographic databases:
Language: Russian
Citation: A. K. Kel'mans, “Asymptotic formulas for the probability of k-connectedness of random graphs”, Teor. Veroyatnost. i Primenen., 17:2 (1972), 253–265; Theory Probab. Appl., 17:2 (1973), 243–254
Citation in format AMSBIB
\Bibitem{Kel72}
\by A.~K.~Kel'mans
\paper Asymptotic formulas for the probability of $k$-connectedness of random graphs
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 2
\pages 253--265
\mathnet{http://mi.mathnet.ru/tvp2526}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=298723}
\zmath{https://zbmath.org/?q=an:0253.05136}
\transl
\jour Theory Probab. Appl.
\yr 1973
\vol 17
\issue 2
\pages 243--254
\crossref{https://doi.org/10.1137/1117029}
Linking options:
  • https://www.mathnet.ru/eng/tvp2526
  • https://www.mathnet.ru/eng/tvp/v17/i2/p253
  • This publication is cited in the following 19 articles:
    1. Driss Bennis, Raja L'hamri, Khalid Ouarghi, “Zero-divisor super-λ graphs”, São Paulo J. Math. Sci., 17:2 (2023), 789  crossref
    2. Shuang Zhao, Yingzhi Tian, Jixiang Meng, “Degree Sequence Conditions for Maximally Edge-Connected and Super Edge-Connected Hypergraphs”, Graphs and Combinatorics, 36:4 (2020), 1065  crossref
    3. Shangwei Lin, Jianfeng Pei, Chunfang Li, “Super Edge-Connected Linear Hypergraphs”, Parallel Process. Lett., 30:03 (2020), 2040003  crossref
    4. Zhi-Hong He, Mei Lu, “Super-Edge-Connectivity and Zeroth-Order Randić Index”, J. Oper. Res. Soc. China, 7:4 (2019), 615  crossref
    5. Zhi-hong He, Mei Lu, “Super Edge-connectivity and Zeroth-order General Randić Index for -1 ≤ α < 0”, Acta Math. Appl. Sin. Engl. Ser., 34:4 (2018), 659  crossref
    6. Xing Chen, Juan Liu, Dongyang Xie, Jixiang Meng, “Edge connectivity and super edge-connectivity of jump graphs”, Journal of Information and Optimization Sciences, 37:2 (2016), 233  crossref
    7. Yingzhi Tian, Jixiang Meng, Hongjian Lai, Zhao Zhang, “On the existence of super edge-connected graphs with prescribed degrees”, Discrete Mathematics, 328 (2014), 36  crossref
    8. P. Dankelmann, J. D. Key, B. G. Rodrigues, “Codes from incidence matrices of graphs”, Des. Codes Cryptogr., 68:1-3 (2013), 373  crossref
    9. Litao Guo, Ruifang Liu, Xiaofeng Guo, “Super λ3-optimality of regular graphs”, Applied Mathematics Letters, 25:2 (2012), 128  crossref
    10. Yingzhi Tian, Litao Guo, Jixiang Meng, Chengfu Qin, “Inverse degree and super edge-connectivity”, International Journal of Computer Mathematics, 89:6 (2012), 752  crossref
    11. Jun Yuan, Aixia Liu, Shiying Wang, “Sufficient conditions for bipartite graphs to be super-k-restricted edge connected”, Discrete Mathematics, 309:9 (2009), 2886  crossref
    12. Angelika Hellwig, Lutz Volkmann, “Maximally edge-connected and vertex-connected graphs and digraphs: A survey”, Discrete Mathematics, 308:15 (2008), 3265  crossref
    13. Angelika Hellwig, Lutz Volkmann, “Sufficient conditions for graphs to be λ′‐optimal, super‐edge‐connected, and maximally edge‐connected”, Journal of Graph Theory, 48:3 (2005), 228  crossref
    14. Angelika Hellwig, Lutz Volkmann, “Neighborhood and degree conditions for super-edge-connected bipartite digraphs”, Results. Math., 45:1-2 (2004), 45  crossref
    15. Brian D. Jones, Boris G. Pittel, Joseph S. Verducci, “Tree and forest weights and their application to nonuniform random graphs”, Ann. Appl. Probab., 9:1 (1999)  crossref
    16. A. D. Korshunov, “The main properties of random graphs with a large number of vertices and edges”, Russian Math. Surveys, 40:1 (1985), 121–198  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    17. Béla Bollobás, Andrew Thomason, North-Holland Mathematics Studies, 118, Random Graphs '83, Based on lectures presented at the 1st Poznań Seminar on Random Graphs, 1985, 47  crossref
    18. Yu. D. Burtin, “On extreme metric parameters of a random graph, I”, Theory Probab. Appl., 19:4 (1975), 710–725  mathnet  mathnet  crossref
    19. Linda Lesniak, “Results on the edge-connectivity of graphs”, Discrete Mathematics, 8:4 (1974), 351  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :97
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025