Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1981, Volume 26, Issue 2, Pages 246–265 (Mi tvp2509)  

This article is cited in 144 scientific papers (total in 144 papers)

Martingale approach in the theory of goodness-of-fit tests

E. V. Hmaladze

Moscow
Abstract: Let us consider the parametric hypothesis that the distribution function $F$ of i. i. d. random variables belongs to the given parametric family of distribution functions $\mathbf F=\{F(x,\theta),\,\theta\in\Theta\}$. It is well-known that the limiting distribution of the parametric empirical process $\sqrt n[F_n(x)-F(x,\widehat\theta)]$ depends on $F$, and therefore the «usual» testing procedures become inconvenient.
In the paper we consider the parametric empirical process as a semimartingale. By means of its Doob–Meyer decomposition we construct some martingale and show that this martingale converges weakly to the Wiener process. This fact enables us to use the distribution-free asymptotic theory of testing parametric hypotheses.
Received: 11.11.1980
English version:
Theory of Probability and its Applications, 1982, Volume 26, Issue 2, Pages 240–257
DOI: https://doi.org/10.1137/1126027
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: E. V. Hmaladze, “Martingale approach in the theory of goodness-of-fit tests”, Teor. Veroyatnost. i Primenen., 26:2 (1981), 246–265; Theory Probab. Appl., 26:2 (1982), 240–257
Citation in format AMSBIB
\Bibitem{Khm81}
\by E.~V.~Hmaladze
\paper Martingale approach in the theory of goodness-of-fit tests
\jour Teor. Veroyatnost. i Primenen.
\yr 1981
\vol 26
\issue 2
\pages 246--265
\mathnet{http://mi.mathnet.ru/tvp2509}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=616619}
\zmath{https://zbmath.org/?q=an:0481.60055|0454.60049}
\transl
\jour Theory Probab. Appl.
\yr 1982
\vol 26
\issue 2
\pages 240--257
\crossref{https://doi.org/10.1137/1126027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981NJ71600002}
Linking options:
  • https://www.mathnet.ru/eng/tvp2509
  • https://www.mathnet.ru/eng/tvp/v26/i2/p246
  • This publication is cited in the following 144 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024