|
Teoriya Veroyatnostei i ee Primeneniya, 1981, Volume 26, Issue 2, Pages 225–245
(Mi tvp2508)
|
|
|
|
This article is cited in 42 scientific papers (total in 42 papers)
On the rate of convergence in Kolmogorov's uniform limit theorem. I
T. V. Arak Tallinn
Abstract:
Theorem. {\it For any probability distribution function $F$ on $R$ and for any natural number $n$ there exists an infinitely divisible distribution function $B$ such that
$$
\sup_x|F^{n*}(x)-B(x)|\le C_n^{-2/3}
$$
}
Here $F^{n*}$ is the $n$-fold convolution of $F$ with itself and $C$ is an absolute constant. The paper contains the first part of the proof.
Received: 18.12.1980
Citation:
T. V. Arak, “On the rate of convergence in Kolmogorov's uniform limit theorem. I”, Teor. Veroyatnost. i Primenen., 26:2 (1981), 225–245; Theory Probab. Appl., 26:2 (1982), 219–239
Linking options:
https://www.mathnet.ru/eng/tvp2508 https://www.mathnet.ru/eng/tvp/v26/i2/p225
|
|