Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2003, Volume 48, Issue 4, Pages 661–675
DOI: https://doi.org/10.4213/tvp250
(Mi tvp250)
 

This article is cited in 14 scientific papers (total in 14 papers)

On a stochastic optimality of the feedback control in the LQG-problem

T. A. Belkinaa, Yu. M. Kabanovb, E. L. Presmana

a Central Economics and Mathematics Institute, RAS
b Laboratoire de Mathématiques, Université de Franche-Comté
References:
Abstract: We show that the optimal feedback control $\widehat u$ in the standard nonhomogeneous LQG-problem with infinite horizon has the following property. There is a constant $b_*$ such that, whatever $b> b_*$ is, the deficiency process of optimal control with respect to any possible control $u$, i.e., the difference $J_T(\widehat u\hspace*{0.2pt})- J_T(u)$ between the optimal cost process $J_T(\widehat u\hspace*{0.2pt})$ and the cost process corresponding to control $u$, is majorated at infinity by a deterministic function $b\log T$. In other words, $b\log T$ is an upper function for any deficiency process. This result, combined with an example of an LQG-regulator where, for certain $b>0$, the function $b\log T$ is not an upper function for certain deficiency processes, gives an answer to the long-standing open problem about the best possible rate function for sensitive probabilistic criteria. Our setting covers the optimal tracking problem.
Keywords: linear-quadratic regulator, optimality almost surely, observability, controllability, Riccati equation, martingale law of large numbers, upper functions, Ornstein–Uhlenbeck process.
Received: 25.12.2002
English version:
Theory of Probability and its Applications, 2004, Volume 48, Issue 4, Pages 592–603
DOI: https://doi.org/10.1137/S0040585X97980695
Bibliographic databases:
Language: Russian
Citation: T. A. Belkina, Yu. M. Kabanov, E. L. Presman, “On a stochastic optimality of the feedback control in the LQG-problem”, Teor. Veroyatnost. i Primenen., 48:4 (2003), 661–675; Theory Probab. Appl., 48:4 (2004), 592–603
Citation in format AMSBIB
\Bibitem{BelKabPre03}
\by T.~A.~Belkina, Yu.~M.~Kabanov, E.~L.~Presman
\paper On a stochastic optimality of the feedback control in the
LQG-problem
\jour Teor. Veroyatnost. i Primenen.
\yr 2003
\vol 48
\issue 4
\pages 661--675
\mathnet{http://mi.mathnet.ru/tvp250}
\crossref{https://doi.org/10.4213/tvp250}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2143209}
\zmath{https://zbmath.org/?q=an:1063.93052}
\transl
\jour Theory Probab. Appl.
\yr 2004
\vol 48
\issue 4
\pages 592--603
\crossref{https://doi.org/10.1137/S0040585X97980695}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000226305500002}
Linking options:
  • https://www.mathnet.ru/eng/tvp250
  • https://doi.org/10.4213/tvp250
  • https://www.mathnet.ru/eng/tvp/v48/i4/p661
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024