Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2006, Volume 51, Issue 4, Pages 776–785
DOI: https://doi.org/10.4213/tvp25
(Mi tvp25)
 

This article is cited in 12 scientific papers (total in 12 papers)

Short Communications

Asymptotic expansion of the coverage probability of James–Stein estimators

E. S. Ahmeda, A. K. Md. E. Salehb, A. I. Volodinc, I. N. Volodind

a University of Windsor
b Carleton University
c University of Regina
d Kazan State University
References:
Abstract: This paper provides a new approach to the asymptotic expansion construction of the coverage probability of the confidence sets recentered in [W. James and C. Stein, Estimation with quadratic loss, in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, Univ. California Press, Berkeley, CA, 1961, pp. 361–379] and its positive-part Stein estimators [C. Stein, J. Roy. Statist. Soc. Ser. B, 24 (1962), pp. 265–296]. The coverage probability of these confidence sets depends on the noncentrality parameter $\tau^2$ as in the case of risks of these estimators. The new approach (which is different than Berger's [J. O. Berger, Ann. Statist., 8 (1980), pp. 716–761] and Hwang and Casella's [J. T. Hwang and G. Casella, Statist. Decisions, suppl. 1 (1984), pp. 3–16]) allows us to obtain the asymptotics analysis of the coverage probabilities for the two cases, namely, when $\tau^2\to 0$ and $\tau^2\to\infty$. For both cases we provide a simple approximation of the coverage probabilities. Some graphical and tabular results are provided to assess the accuracy of our approximations.
Keywords: confidence sets, James–Stein estimators, Stein estimation, multivariate normal distribution, coverage probability, asymptotic expansion.
Received: 17.11.2004
English version:
Theory of Probability and its Applications, 2007, Volume 51, Issue 4, Pages 683–695
DOI: https://doi.org/10.1137/S0040585X97982712
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. S. Ahmed, A. K. Md. E. Saleh, A. I. Volodin, I. N. Volodin, “Asymptotic expansion of the coverage probability of James–Stein estimators”, Teor. Veroyatnost. i Primenen., 51:4 (2006), 776–785; Theory Probab. Appl., 51:4 (2007), 683–695
Citation in format AMSBIB
\Bibitem{AhmSalVol06}
\by E.~S.~Ahmed, A.~K.~Md.~E.~Saleh, A.~I.~Volodin, I.~N.~Volodin
\paper Asymptotic expansion of the coverage probability of James--Stein estimators
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 4
\pages 776--785
\mathnet{http://mi.mathnet.ru/tvp25}
\crossref{https://doi.org/10.4213/tvp25}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338067}
\zmath{https://zbmath.org/?q=an:1127.62014}
\elib{https://elibrary.ru/item.asp?id=9310062}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 4
\pages 683--695
\crossref{https://doi.org/10.1137/S0040585X97982712}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251875600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38149102482}
Linking options:
  • https://www.mathnet.ru/eng/tvp25
  • https://doi.org/10.4213/tvp25
  • https://www.mathnet.ru/eng/tvp/v51/i4/p776
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024