Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2009, Volume 54, Issue 1, Pages 63–79
DOI: https://doi.org/10.4213/tvp2499
(Mi tvp2499)
 

This article is cited in 6 scientific papers (total in 6 papers)

Limit Theorem for the Middle Members of Ordered Cycle Lengths in Random $A$-Permutations

A. L. Yakymiv

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (193 kB) Citations (6)
References:
Abstract: In this article, random permutation $\tau_n$ is considered uniformly distributed on the set of all permutations with degree $n$ and with cycle lengths from fixed set $A$ (so-called $A$-permutations). Let $\zeta_n$ be the general number of cycles and $\eta_n(1)\leq\eta_n(2)\leq\cdots\leq\eta_n(\zeta_n)$ be the ordered cycle lengths in a random permutation $\tau_n$. The central limit theorem is obtained here for the middle members of this sequence, i.e., for random variables $\eta_n(m)$ with numbers $m=\alpha\log n+o(\sqrt{\log n})$ as $n\to\infty$ for fixed $\alpha\in(0,\sigma)$ and for some class of the sets $A$ with positive asymptotic density $\sigma$. The basic approach to the proof is the new three-dimensional Tauberian theorem. Asymptotic behavior of extreme left and extreme right members of this sequence was investigated earlier by the author.
Keywords: random $A$-permutation, ordered cycle lengths of permutation, Tauberian theorem.
Received: 01.12.2006
Revised: 31.10.2007
English version:
Theory of Probability and its Applications, 2010, Volume 54, Issue 1, Pages 114–128
DOI: https://doi.org/10.1137/S0040585X97984073
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. L. Yakymiv, “Limit Theorem for the Middle Members of Ordered Cycle Lengths in Random $A$-Permutations”, Teor. Veroyatnost. i Primenen., 54:1 (2009), 63–79; Theory Probab. Appl., 54:1 (2010), 114–128
Citation in format AMSBIB
\Bibitem{Yak09}
\by A.~L.~Yakymiv
\paper Limit Theorem for the Middle Members of Ordered Cycle Lengths in Random $A$-Permutations
\jour Teor. Veroyatnost. i Primenen.
\yr 2009
\vol 54
\issue 1
\pages 63--79
\mathnet{http://mi.mathnet.ru/tvp2499}
\crossref{https://doi.org/10.4213/tvp2499}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2766647}
\zmath{https://zbmath.org/?q=an:05771293}
\elib{https://elibrary.ru/item.asp?id=15329907}
\transl
\jour Theory Probab. Appl.
\yr 2010
\vol 54
\issue 1
\pages 114--128
\crossref{https://doi.org/10.1137/S0040585X97984073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276689500007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77749330083}
Linking options:
  • https://www.mathnet.ru/eng/tvp2499
  • https://doi.org/10.4213/tvp2499
  • https://www.mathnet.ru/eng/tvp/v54/i1/p63
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:634
    Full-text PDF :207
    References:63
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024