|
This article is cited in 9 scientific papers (total in 10 papers)
Moderate Deviations for a Diffusion-Type Process in a Random Environment
R. Sh. Liptsera, P. Chiganskyb a Tel Aviv University
b Tel Aviv University, Department of Electrical Engineering-Systems
Abstract:
Let $\sigma(u)$, $u\in\mathbf{R}$, be an ergodic stationary Markov chain, taking a finite number of values $a_1,\ldots,a_m$, and let $b(u)=g(\sigma(u))$, where $g$ is a bounded and measurable function. We consider the diffusion-type process
$$
dX^\varepsilon_t = b\biggl(\frac{X^\varepsilon_t}{\varepsilon}\biggr)\,dt+\varepsilon^\kappa\sigma\biggl(\frac{X^\varepsilon_t}{\varepsilon}\biggr)\,dB_t,\qquad t\le T,
$$
subject to $X^\varepsilon_0=x_0$, where $\varepsilon$ is a small positive parameter, $B_t$ is a Brownian motion, independent of $\sigma$, and $\kappa>0$ is a fixed constant.
We show that for $\kappa<\frac16$, the family $\{X^\varepsilon_t\}_{\varepsilon\to 0}$ satisfies the large deviation principle (LDP) of Freidlin–Wentzell type with the constant drift $\mathbf{b}$ and the diffusion $\mathbf{a}$, given by
$$
\mathbf{b}=\sum_{i=1}^m\frac{g(a_i)}{a^2_i}\,\pi_i\Big/ \sum_{i=1}^m\frac{1}{a^2_i}\,\pi_i, \quad \mathbf{a}=1\Big/\sum_{i=1}^m\frac{1}{a^2_i}\,\pi_i,
$$
where $\{\pi_1,\ldots,\pi_m\}$ is the invariant distribution of the chain $\sigma(u)$.
Keywords:
random environment, moderate deviations, diffusion-type processes, Freidlin–Wentzell large deviation principle.
Received: 17.03.2007 Revised: 12.10.2008
Citation:
R. Sh. Liptser, P. Chigansky, “Moderate Deviations for a Diffusion-Type Process in a Random Environment”, Teor. Veroyatnost. i Primenen., 54:1 (2009), 39–62; Theory Probab. Appl., 54:1 (2010), 29–50
Linking options:
https://www.mathnet.ru/eng/tvp2498https://doi.org/10.4213/tvp2498 https://www.mathnet.ru/eng/tvp/v54/i1/p39
|
Statistics & downloads: |
Abstract page: | 522 | Full-text PDF : | 164 | References: | 89 |
|