Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2008, Volume 53, Issue 1, Pages 124–150
DOI: https://doi.org/10.4213/tvp2485
(Mi tvp2485)
 

This article is cited in 4 scientific papers (total in 4 papers)

Stable Processes, Mixing, and Distributional Properties. II

W. Jedidi

Université Pierre & Marie Curie, Paris VI
References:
Abstract: In Part I of this paper [Theory Probab. Appl., 52 (2008), pp. 580–593], we considered real-valued stable Lévy processes $ (S_t^{\alpha, \beta,\gamma,\delta})_{t\ge 0}$, where the deterministic numbers $\alpha, \beta, \gamma,\delta$ are, respectively, the stability, skewness, scale, and drift coefficients. Then, allowing $ \beta, \gamma,\delta $ to be random, we introduced the notion of mixed stable processes $ (M_t^{\alpha, \beta, \gamma,\delta})_{t\ge 0}$ and gave a structure of conditionally Lévy processes. In this second part, we provide controls of the (nonmixed) densities $ G_t^{\alpha, \beta, \gamma,\delta}(x)$ when $ x $ goes to the extremities of the support of $ G_t^{\alpha, \beta, \gamma,\delta} $ uniformly in $t,\beta,\gamma,\delta $ and present a Mellin duplication formula on these densities, relative to the stability coefficient $\alpha $. The new representations of the densities give an explicit expression of all the moments of order $0<\rho<\alpha$. We also study the densities $x\mapsto H_s(x)$ of mixed stable variables $M_s^{\alpha,\beta_s,\gamma_s,\delta_s}$ (by families of random variables $(\beta_s,\gamma_s,\delta_s)_{s\in S}$) and give their asymptotic controls in the space variable $x$ uniformly in $s\in S$.
Keywords: stable processes, conditionally PIIS, Mellin convolution, density, derivatives, uniform controls.
Received: 23.06.2005
English version:
Theory of Probability and its Applications, 2009, Volume 53, Issue 1, Pages 81–105
DOI: https://doi.org/10.1137/S0040585X97983419
Bibliographic databases:
Language: English
Citation: W. Jedidi, “Stable Processes, Mixing, and Distributional Properties. II”, Teor. Veroyatnost. i Primenen., 53:1 (2008), 124–150; Theory Probab. Appl., 53:1 (2009), 81–105
Citation in format AMSBIB
\Bibitem{Jed08}
\by W.~Jedidi
\paper Stable Processes, Mixing, and Distributional Properties.~II
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 1
\pages 124--150
\mathnet{http://mi.mathnet.ru/tvp2485}
\crossref{https://doi.org/10.4213/tvp2485}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2760568}
\zmath{https://zbmath.org/?q=an:1192.60072}
\transl
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 1
\pages 81--105
\crossref{https://doi.org/10.1137/S0040585X97983419}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264940300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-62249200541}
Linking options:
  • https://www.mathnet.ru/eng/tvp2485
  • https://doi.org/10.4213/tvp2485
  • https://www.mathnet.ru/eng/tvp/v53/i1/p124
    Cycle of papers
    This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024