Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1981, Volume 26, Issue 1, Pages 156–160 (Mi tvp2479)  

This article is cited in 3 scientific papers (total in 4 papers)

Short Communications

On an estimate of the concentration function for the sum of identically distributed two-dimensional independent lattice random vectors

A. G. Postnikova, A. A. Judinb

a Moscow
b Vladimir
Full-text PDF (269 kB) Citations (4)
Abstract: The following theorem is proved. If $\xi_1,\xi_2,\dots$ is a sequence of non-degenerate identically distributed independent random variables with values in $Z^2$, then
$$ \sup_{m\in Z^2}\mathbf P(\xi_1+\dots+\xi_n=m)\le Cn^{-1}\Delta^{-1/2}, $$
where $C$ is an absolute constant, $\Delta=(P_L-P_0)(1-P_L)$,
$$ P_0=\max_{m\in Z^2}\mathbf P\{\xi=x\},\qquad P_L=\max_H\mathbf P\{\xi\in H\}, $$
$H$ is a set of points belonging to some straight line.
Received: 31.10.1978
English version:
Theory of Probability and its Applications, 1981, Volume 26, Issue 1, Pages 152–156
DOI: https://doi.org/10.1137/1126014
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. G. Postnikov, A. A. Judin, “On an estimate of the concentration function for the sum of identically distributed two-dimensional independent lattice random vectors”, Teor. Veroyatnost. i Primenen., 26:1 (1981), 156–160; Theory Probab. Appl., 26:1 (1981), 152–156
Citation in format AMSBIB
\Bibitem{PosYud81}
\by A.~G.~Postnikov, A.~A.~Judin
\paper On an estimate of the concentration function for the sum of identically distributed two-dimensional independent lattice random vectors
\jour Teor. Veroyatnost. i Primenen.
\yr 1981
\vol 26
\issue 1
\pages 156--160
\mathnet{http://mi.mathnet.ru/tvp2479}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=605645}
\zmath{https://zbmath.org/?q=an:0473.60024|0454.60016}
\transl
\jour Theory Probab. Appl.
\yr 1981
\vol 26
\issue 1
\pages 152--156
\crossref{https://doi.org/10.1137/1126014}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MY89200014}
Linking options:
  • https://www.mathnet.ru/eng/tvp2479
  • https://www.mathnet.ru/eng/tvp/v26/i1/p156
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :96
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024