Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2008, Volume 53, Issue 3, Pages 623–638
DOI: https://doi.org/10.4213/tvp2457
(Mi tvp2457)
 

This article is cited in 38 scientific papers (total in 38 papers)

Optimal Stopping Games and Nash Equilibrium

G. Peskir

University of Aarhus, Department of Mathematical Sciences
References:
Abstract: We show that the value function of the optimal stopping game for a right-continuous strong Markov process can be identified via equality between the smallest superharmonic and the largest subharmonic function lying between the gain functions (semiharmonic characterization) if and only if the Nash equilibrium holds (i.e., there exists a saddle point of optimal stopping times). When specialized to optimal stopping problems it is seen that the former identification reduces to the classic characterization of the value function in terms of superharmonic or subharmonic functions. The equivalence itself shows that finding the value function by “pulling a rope” between “two obstacles” is the same as establishing a Nash equilibrium. Further properties of the value function and the optimal stopping times are exhibited in the proof.
Keywords: optimal stopping game, Nash equilibrium, semiharmonic characterization of the value function, free boundary problem, principle of smooth fit, principle of continuous fit, optimal stopping, Markov process, semimartingale.
Received: 21.07.2007
English version:
Theory of Probability and its Applications, 2009, Volume 53, Issue 3, Pages 558–571
DOI: https://doi.org/10.1137/S0040585X97983821
Bibliographic databases:
Language: English
Citation: G. Peskir, “Optimal Stopping Games and Nash Equilibrium”, Teor. Veroyatnost. i Primenen., 53:3 (2008), 623–638; Theory Probab. Appl., 53:3 (2009), 558–571
Citation in format AMSBIB
\Bibitem{Pes08}
\by G.~Peskir
\paper Optimal Stopping Games and Nash Equilibrium
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 3
\pages 623--638
\mathnet{http://mi.mathnet.ru/tvp2457}
\crossref{https://doi.org/10.4213/tvp2457}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2759714}
\zmath{https://zbmath.org/?q=an:05701634}
\transl
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 3
\pages 558--571
\crossref{https://doi.org/10.1137/S0040585X97983821}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000270196500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69549118353}
Linking options:
  • https://www.mathnet.ru/eng/tvp2457
  • https://doi.org/10.4213/tvp2457
  • https://www.mathnet.ru/eng/tvp/v53/i3/p623
  • This publication is cited in the following 38 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024