|
Teoriya Veroyatnostei i ee Primeneniya, 1981, Volume 26, Issue 1, Pages 59–72
(Mi tvp2454)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Cylindrical measures and $p$-summing operators
Ju. N. Vladimirskiĭ Kostroma
Abstract:
Let $(E,t)$ be a locally convex space. In terms of $p$-summing operators and tensor products we obtain sufficient conditions for the existence of a topology $\tau$ on $E$ such that the continuity of any linear operator
$\Phi\colon(E,\tau)\to S(\Omega)$ is equivalent to $\mathscr E$-tightness (i. e. cylindrical concentration on the equicontinuous sets of $(E,t)'$) of corresponding cylindrical measure $X$ on $(E,t)'$.
Received: 10.02.1978
Citation:
Ju. N. Vladimirskiǐ, “Cylindrical measures and $p$-summing operators”, Teor. Veroyatnost. i Primenen., 26:1 (1981), 59–72; Theory Probab. Appl., 26:1 (1981), 56–68
Linking options:
https://www.mathnet.ru/eng/tvp2454 https://www.mathnet.ru/eng/tvp/v26/i1/p59
|
Statistics & downloads: |
Abstract page: | 177 | Full-text PDF : | 82 |
|