Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2004, Volume 49, Issue 1, Pages 184–190
DOI: https://doi.org/10.4213/tvp245
(Mi tvp245)
 

This article is cited in 25 scientific papers (total in 25 papers)

Short Communications

On a property of the moment at which Brownian motion attains its maximum and some optimal stopping problems

M. A. Urusov

M. V. Lomonosov Moscow State University
References:
Abstract: Let $B=(B_t)_{0\le t\le 1}$ be a standard Brownian motion and $\theta$ be the moment at which $B$ attains its maximal value, i.e., $B_\theta=\max_{0\le t\le 1}B_t$. Denote by $(\mathscr{F}^B_t)_{0\le t\le 1}$ the filtration generated by $B$. We prove that for any $(\mathscr{F}^B_t)$-stopping time $\tau$ $(0\le\tau\le 1)$, the following equality holds:
$$ E(B_\theta-B_\tau)^2=E|\theta-\tau|+\frac{1}{2}. $$
Together with the results of [S. E. Graversen, G. Peskir, and A. N. Shiryaev, Theory Probab. Appl., 45 (2000), pp. 41–50] this implies that the optimal stopping time $\tau_*$ in the problem
$$ \inf_\tauE|\theta-\tau| $$
has the form
$$ \tau_*=\inf\big\{0\le t\le 1: S_t-B_t\ge z_*\sqrt{1-t}\,\big\}, $$
where $S_t=\max_{0\le s\le t}B_s$, $z_*$ is a unique positive root of the equation $4\Phi(z)-2z\phi(z)-3=0$, $\phi(z)$ and $\Phi(z)$ are the density and the distribution function of a standard Gaussian random variable. Similarly, we solve the optimal stopping problems
$$ \inf_{\tau\in\mathfrak{M}_\alpha}E(\tau-\theta)^+ \quadand\quad \inf_{\tau\in\mathfrak{N}_\alpha}E(\tau-\theta)^-, $$
where $\mathfrak{M}_\alpha=\{\tau\colon\,E(\tau-\theta)^-\le \alpha\}$, and $\mathfrak{N}_\alpha=\{\tau\colon\,E(\tau-\theta)^+\le\alpha\}$. The corresponding optimal stopping times are of the same form as above (with other $z_*$'s).
Keywords: moment of attaining the maximum, Brownian motion, optimal stopping.
Received: 11.12.2003
English version:
Theory of Probability and its Applications, 2005, Volume 49, Issue 1, Pages 169–176
DOI: https://doi.org/10.1137/S0040585X97980956
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. A. Urusov, “On a property of the moment at which Brownian motion attains its maximum and some optimal stopping problems”, Teor. Veroyatnost. i Primenen., 49:1 (2004), 184–190; Theory Probab. Appl., 49:1 (2005), 169–176
Citation in format AMSBIB
\Bibitem{Uru04}
\by M.~A.~Urusov
\paper On a property of the moment at which Brownian motion attains its maximum
and some optimal stopping problems
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 1
\pages 184--190
\mathnet{http://mi.mathnet.ru/tvp245}
\crossref{https://doi.org/10.4213/tvp245}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141339}
\zmath{https://zbmath.org/?q=an:1090.60072}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 1
\pages 169--176
\crossref{https://doi.org/10.1137/S0040585X97980956}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228185300014}
Linking options:
  • https://www.mathnet.ru/eng/tvp245
  • https://doi.org/10.4213/tvp245
  • https://www.mathnet.ru/eng/tvp/v49/i1/p184
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:523
    Full-text PDF :168
    References:87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024