Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2008, Volume 53, Issue 3, Pages 472–499
DOI: https://doi.org/10.4213/tvp2443
(Mi tvp2443)
 

This article is cited in 18 scientific papers (total in 18 papers)

Asymptotic Optimality in Bayesian Changepoint Detection Problems under Global False Alarm Probability Constraint

A. G. Tartakovskii

University of Southern California
References:
Abstract: In the 1960s Shiryaev developed the Bayesian theory of changepoint detection in independent and identically distributed (i.i.d.) sequences. In Shiryaev's classical setting the goal is to minimize an average delay to detection under the constraint imposed on the average probability of false alarm. Recently, Tartakovsky and Veeravalli [Theory Probab. Appl., 49 (2005), pp. 458–497] developed a general Bayesian asymptotic changepoint detection theory (in the classical setting) that is not limited to a restrictive i.i.d. assumption. It was proved that Shiryaev's detection procedure is asymptotically optimal under traditional average false alarm probability constraint, assuming that this probability is small. In the present paper, we consider a less conventional approach where the constraint is imposed on the global, supremum false alarm probability. An asymptotically optimal Bayesian change detection procedure is proposed and thoroughly evaluated for both i.i.d. and non-i.i.d. models when the global false alarm probability approaches zero.
Keywords: asymptotic optimality, changepoint detection, cumulative sum procedure, global false alarm probability, nonlinear renewal theory, Shiryaev's rule, sequential detection.
Received: 11.08.2006
English version:
Theory of Probability and its Applications, 2009, Volume 53, Issue 3, Pages 443–466
DOI: https://doi.org/10.1137/S0040585X97983754
Bibliographic databases:
Language: Russian
Citation: A. G. Tartakovskii, “Asymptotic Optimality in Bayesian Changepoint Detection Problems under Global False Alarm Probability Constraint”, Teor. Veroyatnost. i Primenen., 53:3 (2008), 472–499; Theory Probab. Appl., 53:3 (2009), 443–466
Citation in format AMSBIB
\Bibitem{Tar08}
\by A.~G.~Tartakovskii
\paper Asymptotic Optimality in Bayesian Changepoint Detection Problems under Global False Alarm Probability Constraint
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 3
\pages 472--499
\mathnet{http://mi.mathnet.ru/tvp2443}
\crossref{https://doi.org/10.4213/tvp2443}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2759706}
\zmath{https://zbmath.org/?q=an:05701627}
\elib{https://elibrary.ru/item.asp?id=15363977}
\transl
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 3
\pages 443--466
\crossref{https://doi.org/10.1137/S0040585X97983754}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000270196500005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-69549123936}
Linking options:
  • https://www.mathnet.ru/eng/tvp2443
  • https://doi.org/10.4213/tvp2443
  • https://www.mathnet.ru/eng/tvp/v53/i3/p472
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:457
    Full-text PDF :229
    References:86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024