Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 4, Pages 805–810 (Mi tvp2439)  

This article is cited in 61 scientific papers (total in 61 papers)

Short Communications

The estimate of the distribution of noise in autoregressive scheme

M. V. Boldin

Moscow
Abstract: Let uj=β1uj1++βqujq+εj (j=1,,n) аге n observations of autoregressive scheme, where β1,,βq are unknown nonrandom parameters and εj are independent identically distributed random variables with zero mean, finite variance and unknown distribution function G(x). The estimate G^n(x) of G(x) is considered. It is proved that n[G^n(G1(t))t] converges weakly to the Brownian bridge when u. The result is used in the testing of the hypotheses on G(x).
Received: 03.04.1981
English version:
Theory of Probability and its Applications, 1983, Volume 27, Issue 4, Pages 866–871
DOI: https://doi.org/10.1137/1127098
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. V. Boldin, “The estimate of the distribution of noise in autoregressive scheme”, Teor. Veroyatnost. i Primenen., 27:4 (1982), 805–810; Theory Probab. Appl., 27:4 (1983), 866–871
Citation in format AMSBIB
\Bibitem{Bol82}
\by M.~V.~Boldin
\paper The estimate of the distribution of noise in autoregressive scheme
\jour Teor. Veroyatnost. i Primenen.
\yr 1982
\vol 27
\issue 4
\pages 805--810
\mathnet{http://mi.mathnet.ru/tvp2439}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=681475}
\zmath{https://zbmath.org/?q=an:0526.62085|0499.62083}
\transl
\jour Theory Probab. Appl.
\yr 1983
\vol 27
\issue 4
\pages 866--871
\crossref{https://doi.org/10.1137/1127098}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983RU72200019}
Linking options:
  • https://www.mathnet.ru/eng/tvp2439
  • https://www.mathnet.ru/eng/tvp/v27/i4/p805
  • This publication is cited in the following 61 articles:
    1. Bingqi Liu, Tianxiao Pang, Siang Cheng, “Estimation for generalized linear cointegration regression models through composite quantile regression approach”, Finance Research Letters, 65 (2024), 105567  crossref
    2. M. V. Boldin, A. R. Shabakaeva, “Symmetry verification of innovation distributions in autoregressive schemes”, Moscow University Mathematics Bulletin, 78:5 (2023), 216–222  mathnet  crossref  crossref  elib
    3. Oliver Linton, Myung Hwan Seo, Yoon-Jae Whang, “Testing stochastic dominance with many conditioning variables”, Journal of Econometrics, 235:2 (2023), 507  crossref
    4. Chen Zhong, “Extended Glivenko–Cantelli theorem and L1 strong consistency of innovation density estimator for time-varying semiparametric ARCH model”, Journal of Nonparametric Statistics, 35:2 (2023), 373  crossref
    5. Christian Francq, Jean-Michel Zakoïan, “Adaptiveness of the empirical distribution of residuals in semi-parametric conditional location scale models”, Bernoulli, 28:1 (2022)  crossref
    6. Tianze Liu, Yong Zhang, “Law of the iterated logarithm for error density estimators in nonlinear autoregressive models”, Communications in Statistics - Theory and Methods, 49:5 (2020), 1082  crossref
    7. M. V. Boldin, “Local power of Kolmogorov’s and omega-squared type criteria in autoregression”, Moscow University Mathematics Bulletin, 74:6 (2019), 249–252  mathnet  crossref  mathscinet  zmath  isi
    8. M. V. Boldin, “On the Asymptotic Power of Tests of Fit under Local Alternatives in Autoregression”, Math. Meth. Stat., 28:2 (2019), 144  crossref
    9. M. V. Boldin, M. N. Petriev, “On the Empirical Distribution Function of Residuals in Autoregression with Outliers and Pearson's Chi-Square Type Tests”, Math. Meth. Stat., 27:4 (2018), 294  crossref
    10. Gabe Chandler, Wolfgang Polonik, “Residual Empirical Processes and Weighted Sums for Time‐Varying Processes with Applications to Testing for Homoscedasticity”, Journal Time Series Analysis, 38:1 (2017), 72  crossref
    11. Marta Moreno, Juan Romo, “Robust unit root tests with autoregressive errors”, Communications in Statistics - Theory and Methods, 45:20 (2016), 5997  crossref
    12. Anil K. Bera, Antonio F. Galvao, Liang Wang, Zhijie Xiao, “A NEW CHARACTERIZATION OF THE NORMAL DISTRIBUTION AND TEST FOR NORMALITY”, Econom. Theory, 32:5 (2016), 1216  crossref
    13. V. N. Zvarich, “Peculiarities of finding characteristic functions of the generating process in the model of stationary linear AR(2) process with negative binomial distribution”, Radioelectron.Commun.Syst., 59:12 (2016), 567  crossref
    14. Igor L. Kheifets, “Specification tests for nonlinear dynamic models”, The Econometrics Journal, 18:1 (2015), 67  crossref
    15. Zacharias Psaradakis, Marián Vávra, “A Quantile‐based Test for Symmetry of Weakly Dependent Processes”, Journal Time Series Analysis, 36:4 (2015), 587  crossref
    16. Igor Kheifets, “Specification Tests for Nonlinear Dynamic Models”, SSRN Journal, 2014  crossref
    17. Dong Li, “Weak convergence of the sequential empirical processes of residuals in TAR models”, Sci. China Math., 57:1 (2014), 173  crossref
    18. Christian Bontemps, Nour Meddahi, “Testing distributional assumptions: A GMM aproach”, J of Applied Econometrics, 27:6 (2012), 978  crossref
    19. Fuxia Cheng, “Global property of error density estimation in nonlinear autoregressive time series models”, Stat Inference Stoch Process, 13:1 (2010), 43  crossref
    20. Ursula U. Müller, Anton Schick, Wolfgang Wefelmeyer, “Estimating the innovation distribution in nonparametric autoregression”, Probab. Theory Relat. Fields, 144:1-2 (2009), 53  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :162
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025