Abstract:
Let uj=β1uj−1+⋯+βquj−q+εj (j=1,…,n) аге n observations of autoregressive scheme, where β1,…,βq are unknown nonrandom parameters and εj are independent identically distributed random variables with zero mean, finite variance and
unknown distribution function G(x). The estimate ˆGn(x) of G(x) is considered. It is proved that
√n[ˆGn(G−1(t))−t] converges weakly to the Brownian bridge when u→∞. The result is used in the testing of the hypotheses on G(x).
Citation:
M. V. Boldin, “The estimate of the distribution of noise in autoregressive scheme”, Teor. Veroyatnost. i Primenen., 27:4 (1982), 805–810; Theory Probab. Appl., 27:4 (1983), 866–871
\Bibitem{Bol82}
\by M.~V.~Boldin
\paper The estimate of the distribution of noise in autoregressive scheme
\jour Teor. Veroyatnost. i Primenen.
\yr 1982
\vol 27
\issue 4
\pages 805--810
\mathnet{http://mi.mathnet.ru/tvp2439}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=681475}
\zmath{https://zbmath.org/?q=an:0526.62085|0499.62083}
\transl
\jour Theory Probab. Appl.
\yr 1983
\vol 27
\issue 4
\pages 866--871
\crossref{https://doi.org/10.1137/1127098}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983RU72200019}
Linking options:
https://www.mathnet.ru/eng/tvp2439
https://www.mathnet.ru/eng/tvp/v27/i4/p805
This publication is cited in the following 61 articles:
Bingqi Liu, Tianxiao Pang, Siang Cheng, “Estimation for generalized linear cointegration regression models through composite quantile regression approach”, Finance Research Letters, 65 (2024), 105567
M. V. Boldin, A. R. Shabakaeva, “Symmetry verification of innovation distributions in autoregressive schemes”, Moscow University Mathematics Bulletin, 78:5 (2023), 216–222
Oliver Linton, Myung Hwan Seo, Yoon-Jae Whang, “Testing stochastic dominance with many conditioning variables”, Journal of Econometrics, 235:2 (2023), 507
Chen Zhong, “Extended Glivenko–Cantelli theorem and L1 strong consistency of innovation density estimator for time-varying semiparametric ARCH model”, Journal of Nonparametric Statistics, 35:2 (2023), 373
Christian Francq, Jean-Michel Zakoïan, “Adaptiveness of the empirical distribution of residuals in semi-parametric conditional location scale models”, Bernoulli, 28:1 (2022)
Tianze Liu, Yong Zhang, “Law of the iterated logarithm for error density estimators in nonlinear autoregressive models”, Communications in Statistics - Theory and Methods, 49:5 (2020), 1082
M. V. Boldin, “Local power of Kolmogorov’s and omega-squared type criteria in autoregression”, Moscow University Mathematics Bulletin, 74:6 (2019), 249–252
M. V. Boldin, “On the Asymptotic Power of Tests of Fit under Local Alternatives in Autoregression”, Math. Meth. Stat., 28:2 (2019), 144
M. V. Boldin, M. N. Petriev, “On the Empirical Distribution Function of Residuals in Autoregression with Outliers and Pearson's Chi-Square Type Tests”, Math. Meth. Stat., 27:4 (2018), 294
Gabe Chandler, Wolfgang Polonik, “Residual Empirical Processes and Weighted Sums for Time‐Varying Processes with Applications to Testing for Homoscedasticity”, Journal Time Series Analysis, 38:1 (2017), 72
Marta Moreno, Juan Romo, “Robust unit root tests with autoregressive errors”, Communications in Statistics - Theory and Methods, 45:20 (2016), 5997
Anil K. Bera, Antonio F. Galvao, Liang Wang, Zhijie Xiao, “A NEW CHARACTERIZATION OF THE NORMAL DISTRIBUTION AND TEST FOR NORMALITY”, Econom. Theory, 32:5 (2016), 1216
V. N. Zvarich, “Peculiarities of finding characteristic functions of the generating process in the model of stationary linear AR(2) process with negative binomial distribution”, Radioelectron.Commun.Syst., 59:12 (2016), 567
Igor L. Kheifets, “Specification tests for nonlinear dynamic models”, The Econometrics Journal, 18:1 (2015), 67
Zacharias Psaradakis, Marián Vávra, “A Quantile‐based Test for Symmetry of Weakly Dependent Processes”, Journal Time Series Analysis, 36:4 (2015), 587
Igor Kheifets, “Specification Tests for Nonlinear Dynamic Models”, SSRN Journal, 2014
Dong Li, “Weak convergence of the sequential empirical processes of residuals in TAR models”, Sci. China Math., 57:1 (2014), 173
Christian Bontemps, Nour Meddahi, “Testing distributional assumptions: A GMM aproach”, J of Applied Econometrics, 27:6 (2012), 978
Fuxia Cheng, “Global property of error density estimation in nonlinear autoregressive time series models”, Stat Inference Stoch Process, 13:1 (2010), 43
Ursula U. Müller, Anton Schick, Wolfgang Wefelmeyer, “Estimating the innovation distribution in nonparametric autoregression”, Probab. Theory Relat. Fields, 144:1-2 (2009), 53