Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2008, Volume 53, Issue 2, Pages 397–403
DOI: https://doi.org/10.4213/tvp2424
(Mi tvp2424)
 

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

Lower Bounds for Tails of Sums of Independent Symmetric Random Variables

L. Mattner

University Lübeck
Full-text PDF (938 kB) Citations (2)
References:
Abstract: The approach of Kleitman [Adv. in Math., 5 (1970), pp. 155–157] and Kanter [J. Multivariate Anal., 6 (1976), pp. 222–236] to multivariate concentration function inequalities is generalized in order to obtain for deviation probabilities of sums of independent symmetric random variables a lower bound depending only on deviation probabilities of the terms of the sum. This bound is optimal up to discretization effects, improves on a result of Nagaev [Theory Probab. Appl., 46 (2002), pp. 728–735], and complements the comparison theorems of Birnbaum [Ann. Math. Statist., 19 (1948), pp. 76–81] and Pruss [Ann. Inst. H. Poincaré, 33 (1997), pp. 651–671]). Birnbaum's theorem for unimodal random variables is extended to the lattice case.
Keywords: Bernoulli convolution, concentration function, deviation probabilities, Poisson binomial distribution, symmetric three point convolution, unimodality.
Received: 07.09.2006
English version:
Theory of Probability and its Applications, 2009, Volume 53, Issue 2, Pages 334–339
DOI: https://doi.org/10.1137/S0040585X97983651
Bibliographic databases:
Document Type: Article
Language: English
Citation: L. Mattner, “Lower Bounds for Tails of Sums of Independent Symmetric Random Variables”, Teor. Veroyatnost. i Primenen., 53:2 (2008), 397–403; Theory Probab. Appl., 53:2 (2009), 334–339
Citation in format AMSBIB
\Bibitem{Mat08}
\by L.~Mattner
\paper Lower Bounds for Tails of Sums of Independent Symmetric Random Variables
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 2
\pages 397--403
\mathnet{http://mi.mathnet.ru/tvp2424}
\crossref{https://doi.org/10.4213/tvp2424}
\zmath{https://zbmath.org/?q=an:05701614}
\transl
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 2
\pages 334--339
\crossref{https://doi.org/10.1137/S0040585X97983651}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267617600012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67249143934}
Linking options:
  • https://www.mathnet.ru/eng/tvp2424
  • https://doi.org/10.4213/tvp2424
  • https://www.mathnet.ru/eng/tvp/v53/i2/p397
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:270
    Full-text PDF :187
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024