Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2008, Volume 53, Issue 2, Pages 336–344
DOI: https://doi.org/10.4213/tvp2412
(Mi tvp2412)
 

This article is cited in 6 scientific papers (total in 6 papers)

Short Communications

On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I

A. A. Borovkov, A. A. Mogul'skii

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The present paper, consisting of two parts, is sequential to [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl., 51 (2007), pp. 227–255 and pp. 567–594], [A. A. Borovkov and K. A. Borovkov, Theory Probab. Appl., 46 (2002), pp. 193–213 and 49 (2005), pp. 189–206], and [A. A. Borovkov and K. A. Borovkov, Asymptotic Analysis of Random Walks. I. Slowly Decreasing Distributions of Jumps, Nauka, Moscow (in Russian), to be published] and is devoted to studying the asymptotics of the probability that the sum of the independent random vectors is in a small cube with the vertex at point $x$ in the large deviations zone. The papers [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl., 51 (2007), pp. 227–255 and pp. 567–594] are mostly devoted to the “regular deviations” problem (the problem [A] using the terminology of [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl., 51 (2007), pp. 227–255 and pp. 567–594]), when the relative (“normalized”) deviations $x/n$ ($n$ is the number of terms in the sum) are in the analyticity domain of the large deviations rate function for the summands (the so-called Cramér deviations zone) and at the same time $|x|/n\to\infty$ (superlarge deviations). In the present paper we study the “alternative” problem of “irregular deviations” when $x/n$ either approaches the boundary of the Cramér deviations zone or moves away from this zone (the problem [B] using the terminology of [A. A. Borovkov and A. A. Mogulskii, Theory Probab. Appl., 51 (2007), pp. 227–255 and pp. 567–594]). In this case the large deviations problems in many aspects remained unknown. The desired asymptotics for deviations close to the boundary of the Cramér zone is obtained in section I of this paper under quite weak conditions in the general multivariate case. Furthermore, in the univariate case we also study the deviations which are bounded away from the Cramér zone. In this case we require some additional regularity properties for the distributions of the summands.
Keywords: rate function, large deviations, irregular large deviations, Cramér deviation zone, superlarge deviations, integrolocal theorem.
Received: 06.04.2008
English version:
Theory of Probability and its Applications, 2009, Volume 53, Issue 2, Pages 301–311
DOI: https://doi.org/10.1137/S0040585X97983560
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. A. Borovkov, A. A. Mogul'skii, “On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cramér Zone. I”, Teor. Veroyatnost. i Primenen., 53:2 (2008), 336–344; Theory Probab. Appl., 53:2 (2009), 301–311
Citation in format AMSBIB
\Bibitem{BorMog08}
\by A.~A.~Borovkov, A.~A.~Mogul'skii
\paper On Large Deviations of Sums of Independent Random Vectors on the Boundary and Outside of the Cram\'er Zone.~I
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 2
\pages 336--344
\mathnet{http://mi.mathnet.ru/tvp2412}
\crossref{https://doi.org/10.4213/tvp2412}
\zmath{https://zbmath.org/?q=an:05701609}
\transl
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 2
\pages 301--311
\crossref{https://doi.org/10.1137/S0040585X97983560}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267617600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67249165319}
Linking options:
  • https://www.mathnet.ru/eng/tvp2412
  • https://doi.org/10.4213/tvp2412
  • https://www.mathnet.ru/eng/tvp/v53/i2/p336
    Cycle of papers
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:652
    Full-text PDF :204
    References:107
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024