Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2008, Volume 53, Issue 2, Pages 307–335
DOI: https://doi.org/10.4213/tvp2411
(Mi tvp2411)
 

This article is cited in 8 scientific papers (total in 8 papers)

Quantization for Probability Measures in the Prokhorov Metric

S. Graf, H. Luschgy

University of Passau
References:
Abstract: For a probability distribution $P$ on $R^d$ and $n\inN$ consider $e_n=\inf\pi(P,Q)$, where $\pi$ denotes the Prokhorov metric and the infimum is taken over all discrete probabilities $Q$ with $|\mathrm{supp}(Q)|\le n$. We study solutions $Q$ of this minimization problem, stability properties, and consistency of empirical estimators. For some classes of distributions we determine the exact rate of convergence to zero of the $n$th quantization error $e_n$ as $n\to\infty$.
Keywords: multidimensional quantization, Ky Fan metric, Prokhorov metric, optimal quantizers, empirical measures, asymptotic quantization error, entropy, quantization dimension.
Received: 25.11.2003
Revised: 22.05.2007
English version:
Theory of Probability and its Applications, 2009, Volume 53, Issue 2, Pages 216–241
DOI: https://doi.org/10.1137/S0040585X97983687
Bibliographic databases:
Language: English
Citation: S. Graf, H. Luschgy, “Quantization for Probability Measures in the Prokhorov Metric”, Teor. Veroyatnost. i Primenen., 53:2 (2008), 307–335; Theory Probab. Appl., 53:2 (2009), 216–241
Citation in format AMSBIB
\Bibitem{GraLus08}
\by S.~Graf, H.~Luschgy
\paper Quantization for Probability Measures in the Prokhorov Metric
\jour Teor. Veroyatnost. i Primenen.
\yr 2008
\vol 53
\issue 2
\pages 307--335
\mathnet{http://mi.mathnet.ru/tvp2411}
\crossref{https://doi.org/10.4213/tvp2411}
\zmath{https://zbmath.org/?q=an:05701605}
\transl
\jour Theory Probab. Appl.
\yr 2009
\vol 53
\issue 2
\pages 216--241
\crossref{https://doi.org/10.1137/S0040585X97983687}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267617600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-67249122216}
Linking options:
  • https://www.mathnet.ru/eng/tvp2411
  • https://doi.org/10.4213/tvp2411
  • https://www.mathnet.ru/eng/tvp/v53/i2/p307
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:439
    Full-text PDF :187
    References:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024