|
This article is cited in 3 scientific papers (total in 3 papers)
On Mosco Convergence of Diffusion Dirichlet Forms
O. V. Pugachev N. E. Bauman Moscow State Technical University
Abstract:
This paper considers the Mosco convergence of Dirichlet forms $\mathcal{E}_n(f)=\int|\nabla f|^2\,d\mu_n$, where the measures $\mu_n$ locally converge in variation and it is not necessary to have complete supports.
Keywords:
diffusion semigroups, Mosco convergence, measure differentiability, quadratic forms, Sobolev classes.
Received: 19.11.2007
Citation:
O. V. Pugachev, “On Mosco Convergence of Diffusion Dirichlet Forms”, Teor. Veroyatnost. i Primenen., 53:2 (2008), 277–292; Theory Probab. Appl., 53:2 (2009), 242–255
Linking options:
https://www.mathnet.ru/eng/tvp2409https://doi.org/10.4213/tvp2409 https://www.mathnet.ru/eng/tvp/v53/i2/p277
|
|