Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 3, Pages 587–592 (Mi tvp2394)  

This article is cited in 1 scientific paper (total in 1 paper)

Short Communications

On the asymptotical effectiveness of testing a simple hypothesis against a composite alternative

Yu. I. Ingster

Leningrad
Full-text PDF (428 kB) Citations (1)
Abstract: Let $X_\varepsilon$ be an observations with a distribution $P_\theta^\varepsilon$, $\theta\in\Theta$, where the parametric space $\Theta$ is an open subset if the real line, $\varepsilon$ is a real parameter, $\varepsilon\to\varepsilon_0$ (for example, $\varepsilon$ is the number of discrete observations in the sample $X_\varepsilon$ or the length of a continuous process realisation $X_\varepsilon$: $\varepsilon_0=\infty$). On the basis of Вayes' approach we consider the problem of testing the hypothesis $H_0$: $\theta=\xi$ against the hypothesis $H_1$: $\theta$ is a random variable having a priori distribution with the density $\pi(\theta)$. If the probability of the error of the second kind is fixed, then the optimal test (which minimizes the probability of an error of the first kind) is based on the likelihood ratio
$$ \frac{dP_{H_1}^\varepsilon}{dP_{H_0}^\varepsilon}= \int_\Theta\frac{dP_\theta^\varepsilon}{dP_\xi^\varepsilon}\pi(\theta)\,d\theta $$
It is shown that the methods elaborated in [1]–[3] enable us to prove the asymptotic optimality of likelihood ratio test and to receive the asymptotically exact estimates for the probability of error of the first kind for the optimal test. We extend also some results of [5] on a class of models considered in [1]–[4].
Received: 05.12.1978
English version:
Theory of Probability and its Applications, 1983, Volume 27, Issue 3, Pages 628–633
DOI: https://doi.org/10.1137/1127073
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. I. Ingster, “On the asymptotical effectiveness of testing a simple hypothesis against a composite alternative”, Teor. Veroyatnost. i Primenen., 27:3 (1982), 587–592; Theory Probab. Appl., 27:3 (1983), 628–633
Citation in format AMSBIB
\Bibitem{Ing82}
\by Yu.~I.~Ingster
\paper On the asymptotical effectiveness of testing a~simple hypothesis against a~composite alternative
\jour Teor. Veroyatnost. i Primenen.
\yr 1982
\vol 27
\issue 3
\pages 587--592
\mathnet{http://mi.mathnet.ru/tvp2394}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=673934}
\zmath{https://zbmath.org/?q=an:0514.62035|0495.62030}
\transl
\jour Theory Probab. Appl.
\yr 1983
\vol 27
\issue 3
\pages 628--633
\crossref{https://doi.org/10.1137/1127073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983RJ51700020}
Linking options:
  • https://www.mathnet.ru/eng/tvp2394
  • https://www.mathnet.ru/eng/tvp/v27/i3/p587
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024