Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 3, Pages 514–524 (Mi tvp2383)  

This article is cited in 45 scientific papers (total in 45 papers)

On a density estimation within a class of entire functions

I. A. Ibragimova, R. Z. Has'minskiĭb

a Leningrad
b Moscow
Abstract: Let $X_1,\dots,X_n$ be i. i. d. random variables with values in $R^k$ and $p(x)$ be their density. Denote by $\Sigma(\mathbf K)$ the class of density functions such that their characteristic functions have symmetric compact support $\mathbf K$. For an arbitrary estimator $T_n(x)$ consider a function
$$ \Delta_n^2(T_n,p)=\mathbf E_p\|T_n-p\|_2^2, $$
where $\|\cdot\|_2$ is the $\mathscr L_2$-norm, $\mathbf E_p(\cdot)$ is the expectation with respect to the measure generated by $X_1,\dots,X_n$. We prove the equality
$$ \lim_{n\to\infty}[n\inf_{T_n}\sup_{p\in\Sigma(\mathbf K)}\Delta_n^2(T_n,p)]=\frac{\operatorname{mes}\mathbf K}{(2\pi)^k} $$
and some related results.
Received: 19.12.1980
English version:
Theory of Probability and its Applications, 1983, Volume 27, Issue 3, Pages 551–562
DOI: https://doi.org/10.1137/1127062
Bibliographic databases:
Language: Russian
Citation: I. A. Ibragimov, R. Z. Has'minskiǐ, “On a density estimation within a class of entire functions”, Teor. Veroyatnost. i Primenen., 27:3 (1982), 514–524; Theory Probab. Appl., 27:3 (1983), 551–562
Citation in format AMSBIB
\Bibitem{IbrKha82}
\by I.~A.~Ibragimov, R.~Z.~Has'minski{\v\i}
\paper On a~density estimation within a~class of entire functions
\jour Teor. Veroyatnost. i Primenen.
\yr 1982
\vol 27
\issue 3
\pages 514--524
\mathnet{http://mi.mathnet.ru/tvp2383}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=673923}
\zmath{https://zbmath.org/?q=an:0516.62043|0495.62047}
\transl
\jour Theory Probab. Appl.
\yr 1983
\vol 27
\issue 3
\pages 551--562
\crossref{https://doi.org/10.1137/1127062}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983RJ51700009}
Linking options:
  • https://www.mathnet.ru/eng/tvp2383
  • https://www.mathnet.ru/eng/tvp/v27/i3/p514
  • This publication is cited in the following 45 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :120
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024