Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 2, Pages 388–395 (Mi tvp2369)  

This article is cited in 21 scientific papers (total in 21 papers)

Short Communications

Geometrical approach to the maximum likelihood estimation for infinite-dimensional Gaussian location. I

B. S. Cirel'son

Leningrad
Abstract: The MLE for the mean of the infinite-dimensional Gaussian measure with given covariance is studied; we assume that the mean belongs to a given set $V$ and relate the behaviour of MLE with the metric properties of $V$ (the metric is induced by the covariance). For example, a Hölder signal in the white noise admits the MLE if the Hölder exponent is greater than $1/2$ . Some inequalities for the distance between the mean and its MLE are given.
Received: 05.12.1978
English version:
Theory of Probability and its Applications, 1983, Volume 27, Issue 2, Pages 411–418
DOI: https://doi.org/10.1137/1127049
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: B. S. Cirel'son, “Geometrical approach to the maximum likelihood estimation for infinite-dimensional Gaussian location. I”, Teor. Veroyatnost. i Primenen., 27:2 (1982), 388–395; Theory Probab. Appl., 27:2 (1983), 411–418
Citation in format AMSBIB
\Bibitem{Tsi82}
\by B.~S.~Cirel'son
\paper Geometrical approach to the maximum likelihood estimation for infinite-dimensional Gaussian location.~I
\jour Teor. Veroyatnost. i Primenen.
\yr 1982
\vol 27
\issue 2
\pages 388--395
\mathnet{http://mi.mathnet.ru/tvp2369}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=657940}
\zmath{https://zbmath.org/?q=an:0519.62073|0498.62075}
\transl
\jour Theory Probab. Appl.
\yr 1983
\vol 27
\issue 2
\pages 411--418
\crossref{https://doi.org/10.1137/1127049}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983QN71900025}
Linking options:
  • https://www.mathnet.ru/eng/tvp2369
  • https://www.mathnet.ru/eng/tvp/v27/i2/p388
    Cycle of papers
    This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :109
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024