|
Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 4, Pages 760–765
(Mi tvp2367)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Short Communications
Inequalities for the probabilities of large deviations in terms of pseudo-moments
Š. S. Èbralidze Tbilisi
Abstract:
Let $X_1,\dots,X_n$ be independent random variables with finite moments of order $t>2$ with zero means. Denote
\begin{gather*}
\sigma_i^2=\mathbf EX_i^2,\quad c_{i,t}=\mathbf E|X_i|^t,\quad\sigma^2=\sum_{i=1}^n\sigma_i^2,\quad c_t=\sum_{i=1}^nc_{i,t},\quad L_t=c_t/\sigma^t,
\\
S_n=\sum_{i=1}^nX_i.
\end{gather*}
In [1] it was proved that
$$
\mathbf P(S_n\ge x\sigma)\le\exp(-K_1x^2)+K_2L_t/x^t
$$
where $K_1$ and $K_2$ are constants dependent on $t$.
Our aim is to obtain an analogous inequality the right-hand side of which contains the so-called pseudo-moments $\nu_t$ instead of $c_{i,t}$, the pseudo-moments of a distribution $F(x)$ being defined as
$$
\nu_t(F)=t\int_{-\infty}^\infty|F(x)-\Phi_X(x)||x|^{t-1}\,dx
$$
where $\Phi_X(x)$ is the normal distribution function with the same mean and variance as $F(x)$.
Received: 09.08.1971
Citation:
Š. S. Èbralidze, “Inequalities for the probabilities of large deviations in terms of pseudo-moments”, Teor. Veroyatnost. i Primenen., 16:4 (1971), 760–765; Theory Probab. Appl., 16:4 (1971), 737–741
Linking options:
https://www.mathnet.ru/eng/tvp2367 https://www.mathnet.ru/eng/tvp/v16/i4/p760
|
Statistics & downloads: |
Abstract page: | 153 | Full-text PDF : | 83 |
|