Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 2, Pages 380–384 (Mi tvp2366)  

This article is cited in 6 scientific papers (total in 6 papers)

Short Communications

On the estimation of the size of a finite population

G. I. Ivčenko, E. E. Timonina

Moscow
Full-text PDF (361 kB) Citations (6)
Abstract: We construct some estimates of the unknown size $N$ of finite population which are based on the sample of size $n$ drawn with replacement from this population. For the case when $N$, $n\to\infty$ and $0<\alpha_1\le \alpha=\frac{n}{N}\le\alpha_2<\infty$ (where $\alpha_1$ and $\alpha_2$ are given constants) a class of consistent uniformly asymptotically normal estimates of the parameter $\alpha$ is introduced. An asymptotically optimal (in this class) estimate is shown to be a function of the number $\eta_n$ of different elements in the sample.
Received: 05.04.1979
English version:
Theory of Probability and its Applications, 1983, Volume 27, Issue 2, Pages 403–406
DOI: https://doi.org/10.1137/1127047
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. I. Ivčenko, E. E. Timonina, “On the estimation of the size of a finite population”, Teor. Veroyatnost. i Primenen., 27:2 (1982), 380–384; Theory Probab. Appl., 27:2 (1983), 403–406
Citation in format AMSBIB
\Bibitem{IvcTim82}
\by G.~I.~Iv{\v{c}}enko, E.~E.~Timonina
\paper On the estimation of the size of a~finite population
\jour Teor. Veroyatnost. i Primenen.
\yr 1982
\vol 27
\issue 2
\pages 380--384
\mathnet{http://mi.mathnet.ru/tvp2366}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=657938}
\zmath{https://zbmath.org/?q=an:0527.62012|0518.62010}
\transl
\jour Theory Probab. Appl.
\yr 1983
\vol 27
\issue 2
\pages 403--406
\crossref{https://doi.org/10.1137/1127047}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983QN71900023}
Linking options:
  • https://www.mathnet.ru/eng/tvp2366
  • https://www.mathnet.ru/eng/tvp/v27/i2/p380
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024