|
Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 2, Pages 380–384
(Mi tvp2366)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Short Communications
On the estimation of the size of a finite population
G. I. Ivčenko, E. E. Timonina Moscow
Abstract:
We construct some estimates of the unknown size $N$ of finite population which are based on the sample of size $n$ drawn with replacement from this population. For the case when $N$, $n\to\infty$ and $0<\alpha_1\le \alpha=\frac{n}{N}\le\alpha_2<\infty$ (where $\alpha_1$ and $\alpha_2$ are given constants) a class of consistent uniformly asymptotically normal estimates of the parameter $\alpha$ is introduced. An asymptotically optimal (in this class) estimate is shown to be a function of the number $\eta_n$ of different elements in the sample.
Received: 05.04.1979
Citation:
G. I. Ivčenko, E. E. Timonina, “On the estimation of the size of a finite population”, Teor. Veroyatnost. i Primenen., 27:2 (1982), 380–384; Theory Probab. Appl., 27:2 (1983), 403–406
Linking options:
https://www.mathnet.ru/eng/tvp2366 https://www.mathnet.ru/eng/tvp/v27/i2/p380
|
|