Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2004, Volume 49, Issue 1, Pages 54–69
DOI: https://doi.org/10.4213/tvp236
(Mi tvp236)
 

This article is cited in 1 scientific paper (total in 1 paper)

On the concept of random sequence with respect to $p$-adic valued probabilities

A. Yu. Khrennikova, Sh. Yamadab

a Växjö University
b University of Tokyo
References:
Abstract: This paper continues investigations on generalized probability models in which probabilities belong to fields of $p$-adic numbers. We study a $p$-adic generalization of Martin–Löf's theory based on tests for randomness. Such generalization appears to be the most natural approach to $p$-adic randomness. Each test for randomness induces a series of limit theorems. We proved that it is possible to enumerate all $p$-adic tests for randomness. However, in contrast to Martin–Löf's theory for real probabilities we proved that a universal test for randomness does not exist.
Keywords: randomness, collective, Kolmogorov model, von Mises model, $p$-adic numbers.
Received: 28.06.2000
English version:
Theory of Probability and its Applications, 2005, Volume 49, Issue 1, Pages 65–76
DOI: https://doi.org/10.1137/S0040585X97980865
Bibliographic databases:
Language: Russian
Citation: A. Yu. Khrennikov, Sh. Yamada, “On the concept of random sequence with respect to $p$-adic valued probabilities”, Teor. Veroyatnost. i Primenen., 49:1 (2004), 54–69; Theory Probab. Appl., 49:1 (2005), 65–76
Citation in format AMSBIB
\Bibitem{KhrYam04}
\by A.~Yu.~Khrennikov, Sh.~Yamada
\paper On the concept of random sequence with respect
to $p$-adic valued probabilities
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 1
\pages 54--69
\mathnet{http://mi.mathnet.ru/tvp236}
\crossref{https://doi.org/10.4213/tvp236}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2141330}
\zmath{https://zbmath.org/?q=an:1090.60003}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 1
\pages 65--76
\crossref{https://doi.org/10.1137/S0040585X97980865}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000228185300004}
Linking options:
  • https://www.mathnet.ru/eng/tvp236
  • https://doi.org/10.4213/tvp236
  • https://www.mathnet.ru/eng/tvp/v49/i1/p54
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:617
    Full-text PDF :235
    References:110
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024