Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 2, Pages 342–344 (Mi tvp2357)  

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

On the convergence to a multidimensional stable law of the distribution of a location parameter for the composition of random motions in Euclidean space

Yu. S. Hohlov

Kalinin
Full-text PDF (220 kB) Citations (3)
Abstract: We consider a distribution of a location parameter for the composition of random motions in the Euclidean space. It is supposed that the $n$-fold convolution of rotation parameter distribution converges weakly to the uniform distribution on $SO(d)$ and that the location parameter has a distribution belonging to the domain of attraction of some nondegenerate multidimensional law. The integral limit theorem for the location parameter is proved.
Received: 02.11.1981
English version:
Theory of Probability and its Applications, 1983, Volume 27, Issue 2, Pages 363–365
DOI: https://doi.org/10.1137/1127039
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. S. Hohlov, “On the convergence to a multidimensional stable law of the distribution of a location parameter for the composition of random motions in Euclidean space”, Teor. Veroyatnost. i Primenen., 27:2 (1982), 342–344; Theory Probab. Appl., 27:2 (1983), 363–365
Citation in format AMSBIB
\Bibitem{Kho82}
\by Yu.~S.~Hohlov
\paper On the convergence to a multidimensional stable law of the distribution of a~location parameter for the composition of random motions in Euclidean space
\jour Teor. Veroyatnost. i Primenen.
\yr 1982
\vol 27
\issue 2
\pages 342--344
\mathnet{http://mi.mathnet.ru/tvp2357}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=657930}
\zmath{https://zbmath.org/?q=an:0505.60031|0496.60023}
\transl
\jour Theory Probab. Appl.
\yr 1983
\vol 27
\issue 2
\pages 363--365
\crossref{https://doi.org/10.1137/1127039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983QN71900015}
Linking options:
  • https://www.mathnet.ru/eng/tvp2357
  • https://www.mathnet.ru/eng/tvp/v27/i2/p342
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:209
    Full-text PDF :78
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024