|
Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 2, Pages 228–238
(Mi tvp2340)
|
|
|
|
This article is cited in 9 scientific papers (total in 9 papers)
The limit behaviour of decomposable critical branching processes with two types of particles
A. M. Zubkov Moscow
Abstract:
We consider two-dimensional branching processes $\mu(t)=(\mu_1(t),\mu_2(t))$, $t\in\{0,1,\dots\}$, with the offspring generating functions
\begin{gather*}
\mathbf E\{s_1^{\mu_1(1)}s_2^{\mu_2(1)}\mid\mu(0)=(1,0)\}=
F_1(s_1)=s_1+(1-s_1)^{1+\alpha_1}L_1(1-s_1),
\\
\mathbf E\{s_1^{\mu_1(1)}s_2^{\mu_2(1)}\mid\mu(0)=(0,1)\}=
s_2+(1-s_2)^{1+\alpha_2}L_2(1-s_2)-(A+o(1))(1-s_1),
\end{gather*}
where $0<\alpha_1$, $\alpha_2\le 1$ and the functions $L_1(x)$, $L_2(x)$ are slowly varying when
$x\downarrow 0$. We investigate the asymptotics of
$$
\mathbf P\{\mu(t)\ne 0\mid\mu(0)=(0,1)\},\qquad t\to\infty,
$$
and prove the limit theorems for the conditional distribution of the numbers of particles.
Received: 11.05.1981
Citation:
A. M. Zubkov, “The limit behaviour of decomposable critical branching processes with two types of particles”, Teor. Veroyatnost. i Primenen., 27:2 (1982), 228–238; Theory Probab. Appl., 27:2 (1983), 235–237
Linking options:
https://www.mathnet.ru/eng/tvp2340 https://www.mathnet.ru/eng/tvp/v27/i2/p228
|
|