Abstract:
This paper establishes subexponential bounds for the
$t$-mixing and the rate of convergence to invariant
measure for homogeneous Markov processes with continuous
and discrete time.
Keywords:Markov process, mixing, convergence to the equilibrium.
Citation:
A. Yu. Veretennikov, S. A. Klokov, “On subexponential mixing rate for Markov processes”, Teor. Veroyatnost. i Primenen., 49:1 (2004), 21–35; Theory Probab. Appl., 49:1 (2005), 110–122
This publication is cited in the following 34 articles:
Mika Meitz, Pentti Saikkonen, “SUBGEOMETRICALLY ERGODIC AUTOREGRESSIONS WITH AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY”, Econom. Theory, 2023, 1
Mika Meitz, Pentti Saikkonen, “SUBGEOMETRICALLY ERGODIC AUTOREGRESSIONS”, Econom. Theory, 38:5 (2022), 959
Meitz M. Saikkonen P., “Subgeometric Ergodicity and Beta-Mixing”, J. Appl. Probab., 58:3 (2021), PII S0021900220001084, 594–608
Dion Ch., Lemler S., Locherbach E., “Exponential Ergodicity For Diffusions With Jumps Driven By a Hawkes Process”, Theory Probab. Math. Stat., 102 (2020), 97–115
Bally V., Caramellino L., “Convergence and regularity of probability laws by using an interpolation method”, Ann. Probab., 45:2 (2017), 1110–1159
Butkovsky O., Scheutzow M., “Invariant Measures For Stochastic Functional Differential Equations”, Electron. J. Probab., 22 (2017), 98
Vincenzo Capasso, David Bakstein, Modeling and Simulation in Science, Engineering and Technology, An Introduction to Continuous-Time Stochastic Processes, 2015, 349
Vincenzo Capasso, David Bakstein, Modeling and Simulation in Science, Engineering and Technology, An Introduction to Continuous-Time Stochastic Processes, 2015, 281
Palczewski J., Stettner L., “Infinite Horizon Stopping Problems With (Nearly) Total Reward Criteria”, Stoch. Process. Their Appl., 124:12 (2014), 3887–3920
Loecherbach E. Loukianova D., “Polynomial Deviation Bounds for Recurrent Harris Processes Having General State Space”, ESAIM-Prob. Stat., 17 (2013), 195–218
A. Yu. Veretennikov, S. A. Klokov, “On local mixing conditions for SDE approximations”, Theory Probab. Appl., 57:1 (2013), 110–131
Löcherbach E., Loulcianova D., Loukianov O., “Polynomial bounds in the Ergodic theorem for one-dimensional diffusions and integrability of hitting times”, Ann. Inst. Henri Poincaré Probab. Stat., 47:2 (2011), 425–449
B. V. Bondarev, S. M. Kozyr, “On the convergence rate of the solution of differential equation perturbed by “physical” white noise and the solution of corresponding diffusion equation. Exponential mixing”, Theory Probab. Appl., 56:4 (2011), 562–578
Leonenko N.N., Šuvak N., “Statistical inference for reciprocal gamma diffusion process”, J. Statist. Plann. Inference, 140:1 (2010), 30–51
Kleptsyna M.L., Veretennikov A.Yu., “On discrete time ergodic filters with wrong initial data, 2”, Stochastics, 82:1 (2010), 25–40
N. Abourashchi, A. Yu. Veretennikov, “On stochastic averaging and mixing”, Theory Stoch. Process., 16(32):1 (2010), 111–129
Vincenzo Capasso, Daniela Morale, Computational Methods in Applied Sciences, 15, Applied and Numerical Partial Differential Equations, 2010, 59
V. I. Bogachev, N. V. Krylov, M. Röckner, “Elliptic and parabolic equations for measures”, Russian Math. Surveys, 64:6 (2009), 973–1078
Hairer M., “How Hot Can a Heat Bath Get?”, Comm. Math. Phys., 292:1 (2009), 131–177
Jasso-Fuentes H., Hernández-Lerma O., “Blackwell optimality for controlled diffusion processes”, J. Appl. Probab., 46:2 (2009), 372–391