|
Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 4, Pages 738–743
(Mi tvp2337)
|
|
|
|
This article is cited in 47 scientific papers (total in 47 papers)
Short Communications
On the computation of multidimensional integrals by the Monte-Carlo method
V. F. Turčin Moscow
Abstract:
It is shown that if $W(x)$ is an arbitrary non-negative function in $R^n$ then the Markov process with the transition density
$$
P(x'\to x)=\int\rho(x'\to x'')\sigma(x''\to x)\,dx''
$$
where $\rho(x'\to x)$ is an arbitraty transition density and
$$
\sigma(x'\to x)=\rho(x\to x')W(x)\Big/\int\rho(x\to x')W(x)\,dx
$$
has the asymptotic probability density proportional to $W(x)$.
Using this fact, a method for computation of multidimensional integrals is proposed.
Received: 22.10.1969
Citation:
V. F. Turčin, “On the computation of multidimensional integrals by the Monte-Carlo method”, Teor. Veroyatnost. i Primenen., 16:4 (1971), 738–743; Theory Probab. Appl., 16:4 (1971), 720–724
Linking options:
https://www.mathnet.ru/eng/tvp2337 https://www.mathnet.ru/eng/tvp/v16/i4/p738
|
Statistics & downloads: |
Abstract page: | 419 | Full-text PDF : | 204 |
|