|
Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 4, Pages 734–738
(Mi tvp2336)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Short Communications
On weighted polynomial regression designs with minimum average veriance
M. B. Malyutov, V. V. Fëdorov Moscow
Abstract:
Let the measurements of the function $\eta(x)=(w(x))^{1/2}\sum_{\alpha=0}^m\theta_\alpha x^\alpha$ at points $x_i$ $i=1,\dots,N$ give the values $y_i=\eta(x_i)+\nu_i$, $\nu_i$ being independent random variables, $\mathbf E\nu_i=0$, $\mathbf D\nu_i=\sigma^2$.
The design of the experiment can be described by a discrete probability measure $\varepsilon(x)$ which is the proportion of measurements at $x$. Let $d(x,\varepsilon)$ be the variance of the least-squares estimate $\widehat\eta(x)$ of the function $\eta(x)$.
The unique designs of the experiment minimizing
$$
a(\varepsilon)=\int_Xd(x,\varepsilon)\,dx
$$
are found in the two cases: 1) $w(x)\equiv1$, $X=[-1,1]$ and 2) $w(x)=e^{-x^2}$, $X=(-\infty,\infty)$.
Received: 06.11.1968
Citation:
M. B. Malyutov, V. V. Fëdorov, “On weighted polynomial regression designs with minimum average veriance”, Teor. Veroyatnost. i Primenen., 16:4 (1971), 734–738; Theory Probab. Appl., 16:4 (1971), 716–720
Linking options:
https://www.mathnet.ru/eng/tvp2336 https://www.mathnet.ru/eng/tvp/v16/i4/p734
|
Statistics & downloads: |
Abstract page: | 195 | Full-text PDF : | 106 |
|