|
Teoriya Veroyatnostei i ee Primeneniya, 1971, Volume 16, Issue 4, Pages 660–675
(Mi tvp2325)
|
|
|
|
This article is cited in 172 scientific papers (total in 172 papers)
Probability inequalities for sums of independent random variables
D. H. Fuc, S. V. Nagaev Novosibirsk
Abstract:
Let $X_1,\dots,X_n$ be independent random variables; $S_n=X_1+\dots+X_n$; $x$, $y_1,\dots,y_n$ be arbitrary positive numbers, $y\ge\max\{y_1,\dots,y_n\}$.
Inequalities for large deviations are obtained in the following form
$$
\mathbf P(S_n>x)<\sum_{i=1}^n\mathbf P(X_i>y_i)+P(x,y,A(t,y))
$$
where $P(\cdot,\cdot,\cdot)$ is some function of three arguments, $A(t,y)$ is the sum of moments of the order $t$ truncated on the level $y$.
Applications to the strong law of large numbers are given.
Received: 03.09.1970
Citation:
D. H. Fuc, S. V. Nagaev, “Probability inequalities for sums of independent random variables”, Teor. Veroyatnost. i Primenen., 16:4 (1971), 660–675; Theory Probab. Appl., 16:4 (1971), 643–660
Linking options:
https://www.mathnet.ru/eng/tvp2325 https://www.mathnet.ru/eng/tvp/v16/i4/p660
|
|