Abstract:
We survey a. s. convergence criteria for series ∑akεk∑akεk where (εk)(εk) is a sequence of independent Bernoulli random variables, and a1,a2,…a1,a2,… are elements of a Banach space XX. These criteria are applied to investigate the set S(ak) of sums of a conditionally convergent series ∑ak. The following problem is posed: does the a. s. convergence of ∑akεk imply that S(ak) is a shifted closed subspace of X. The answer is affirmative, if X is of cotype q, q<4, and possesses the local unconditional structure.
Citation:
S. A. Čobanjan, “Convergence of Bernoulli series and the set of sums of a conditionally convergent functional series”, Teor. Veroyatnost. i Primenen., 28:2 (1983), 420–429; Theory Probab. Appl., 28:2 (1984), 442–450
\Bibitem{Cho83}
\by S.~A.~{\v C}obanjan
\paper Convergence of Bernoulli series and the set of sums of a~conditionally convergent functional series
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 2
\pages 420--429
\mathnet{http://mi.mathnet.ru/tvp2309}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=700224}
\zmath{https://zbmath.org/?q=an:0533.60005|0514.60011}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 2
\pages 442--450
\crossref{https://doi.org/10.1137/1128039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984SS85900019}
Linking options:
https://www.mathnet.ru/eng/tvp2309
https://www.mathnet.ru/eng/tvp/v28/i2/p420
This publication is cited in the following 2 articles:
S. A. Chobanyan, “Structure of the set of sums of a conditionally convergent series in a normed space”, Math. USSR-Sb., 56:1 (1987), 49–62
R. M. Megrabian, “On the set of sums of functional series in spaces Lϕ”, Theory Probab. Appl., 30:3 (1986), 542–556