Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1983, Volume 28, Issue 2, Pages 404–410 (Mi tvp2307)  

This article is cited in 2 scientific papers (total in 2 papers)

Short Communications

The structure of the class of absolutely admissible tests

A. V. Bernštein

Moscow
Abstract: Let Q be a distribution in Rk which is absolutely continuous with respect to the Lebesgue measure, and let Qλ, λΛRk be an exponential family such that
dQλ/dQ=b(λ)exp{(λ,y)},yRk,
where (y,λ) denotes the scalar product in Rk and B(λ) is a norming constant. Let y be an observation of the random variable Y with distribution Qλ. Let Φε be a complete class of admissible tests in the problem of testing the hypothesis H0:λ=0 against the alternatives Hε: λ0, |λ|ε, and Φ0=ε>0Φε. It is proved that the class Φ0 consists of tests the acceptance regions of which are either the ellipsoidal cylinder or the half-space. Moreover, it is shown that the necessary condition for the test φ to belong to the class ΦR for any R>0 is the following one: the boundary of the acceptance region of φ is an analytic (k1)-dimensional real manifold in Rk. In particular, the likelihood ratio test for normal distribution N(λ,I) and alternatives 0<|λ|R, λ10 is unadmissible.
Received: 13.05.1980
English version:
Theory of Probability and its Applications, 1984, Volume 28, Issue 2, Pages 426–432
DOI: https://doi.org/10.1137/1128037
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Bernštein, “The structure of the class of absolutely admissible tests”, Teor. Veroyatnost. i Primenen., 28:2 (1983), 404–410; Theory Probab. Appl., 28:2 (1984), 426–432
Citation in format AMSBIB
\Bibitem{Ber83}
\by A.~V.~Bern{\v s}tein
\paper The structure of the class of absolutely admissible tests
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 2
\pages 404--410
\mathnet{http://mi.mathnet.ru/tvp2307}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=700222}
\zmath{https://zbmath.org/?q=an:0538.62004|0515.62009}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 2
\pages 426--432
\crossref{https://doi.org/10.1137/1128037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984SS85900017}
Linking options:
  • https://www.mathnet.ru/eng/tvp2307
  • https://www.mathnet.ru/eng/tvp/v28/i2/p404
  • This publication is cited in the following 2 articles:
    1. A. V. Bernshtein, “Absolutely admissible tests in the presence of nuissance parameters”, J Math Sci, 41:1 (1988), 783  crossref
    2. A. V. Bernštein, “A refinement of theorems on complete classes of tests”, Theory Probab. Appl., 30:3 (1986), 613–617  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:202
    Full-text PDF :67
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025