Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2004, Volume 49, Issue 2, Pages 400–410
DOI: https://doi.org/10.4213/tvp230
(Mi tvp230)
 

This article is cited in 68 scientific papers (total in 68 papers)

Short Communications

A Lyapunov-type bound in $R^d$

V. Yu. Bentkus

Bielefeld University
References:
Abstract: Let $\fs X1n$ be independent random vectors taking values in $R^d$ such that ${E X_k =0}$ for all $k$. Write ${S=\fsu X1n}$. Assume that the covariance operator, say $C^2$, of $S$ is invertible. Let $Z$ be a centered Gaussian random vector such that covariances of $S$ and $Z$ are equal. Let $\mathscr{C}$ stand for the class of all convex subsets of $R^d$. We prove a Lyapunov-type bound for $\Delta =\sup_{A\in\mathscr{C}}|P\{S\in A\}-P\{Z\in A\}|$. Namely, ${\Delta \le c d^{1/4} \beta}$ with ${\beta =\fsu \beta 1n}$ and ${\beta_k= E |C^{-1}X_k|^3}$, where $c$ is an absolute constant. If the random variables ${\fs X1n}$ are independent and identically distributed and $X_k$ has identity covariance, then the bound specifies to ${\Delta \le c d^{1/4} E |X_1|^3/\sqrt{n}}$. Whether one can remove the factor $d^{1/4}$ or replace it with a better one (eventually by $1$), remains an open question.
Keywords: multidimensional, central limit theorem, Berry–Esseen bound, Lyapunov, dependence on dimension, nonidentically distributed.
Received: 18.01.2004
English version:
Theory of Probability and its Applications, 2005, Volume 49, Issue 2, Pages 311–323
DOI: https://doi.org/10.1137/S0040585X97981123
Bibliographic databases:
Document Type: Article
Language: English
Citation: V. Yu. Bentkus, “A Lyapunov-type bound in $R^d$”, Teor. Veroyatnost. i Primenen., 49:2 (2004), 400–410; Theory Probab. Appl., 49:2 (2005), 311–323
Citation in format AMSBIB
\Bibitem{Ben04}
\by V.~Yu.~Bentkus
\paper A Lyapunov-type bound in $R^d$
\jour Teor. Veroyatnost. i Primenen.
\yr 2004
\vol 49
\issue 2
\pages 400--410
\mathnet{http://mi.mathnet.ru/tvp230}
\crossref{https://doi.org/10.4213/tvp230}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2144310}
\zmath{https://zbmath.org/?q=an:1090.60019}
\transl
\jour Theory Probab. Appl.
\yr 2005
\vol 49
\issue 2
\pages 311--323
\crossref{https://doi.org/10.1137/S0040585X97981123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000230308000007}
Linking options:
  • https://www.mathnet.ru/eng/tvp230
  • https://doi.org/10.4213/tvp230
  • https://www.mathnet.ru/eng/tvp/v49/i2/p400
  • This publication is cited in the following 68 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024