Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2006, Volume 51, Issue 4, Pages 752–772
DOI: https://doi.org/10.4213/tvp23
(Mi tvp23)
 

This article is cited in 3 scientific papers (total in 3 papers)

Random time-changed extremal processes

E. I. Panchevaa, E. T. Kolkovskab, P. K. Jordanovac

a Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
b Center for Mathematical Research
c Konstantin Preslavsky University of Shumen
References:
Abstract: The point process $\mathcal N=\{(T_k,X_k):k\ge 1\}$ we deal with here is an assumed Bernoulli point process with independent random vectors $X_k$ in $[0,\infty)^d$ and with random time points $T_k$ in $[0,\infty)$, independent of $X$. For normalizing we use a regular sequence $\xi_n(t,x) =(\tau_n(t),u_n(x))$ of time-space changes of $[0,\infty)^{1+d}$. We consider the sequence of the associated extremal processes, $\widetilde{Y}_n(t)=\{\bigvee u^{-1}_n(X_k):T_k\le\tau_n(t)\}$, where the max-operation "$\vee$" is defined in $\mathbf R^d$ componentwise. We assume further that there exist a stochastically continuous time process $\theta=\{\theta(t):t\ge 0\}$, strictly increasing and independent of $\{X_k\}$, and an integer-valued deterministic counting function $k$ on $[0,\infty)$, so that the counting process $N$ of $\mathcal N$ has the form $N(s)=k(\theta(s))$ a.s. In this framework we prove a functional transfer theorem which claims in general that if $\tau_n^{-1}\circ\theta\circ\tau_n\Rightarrow\Lambda$, where $\Lambda$ is strictly increasing and stochastically continuous, and if $\bigvee_{k=1}^{k(\tau_n(\cdot))}u^{-1}_n (X_k)\Rightarrow Y(\cdot)$, then $\widetilde{Y}_n\rightarrow\widetilde{Y}=Y\circ\Lambda$, where $Y$ is a self-similar extremal process. We call such limit processes random time-changed, or compound. They are stochastically continuous and self-similar with respect to the same one-parameter norming group as $Y$. We show that the compound process is an extremal process (i.e., a process with independent max-increments) if and only if $\Lambda$ has independent increments and $Y$ has homogeneous max-increments. We apply random time-changed extremal processes to find a lower bound for the ruin probability in an insurance model associated with $\mathcal N$. We give also an upper bound using an $\alpha$-stable Lévy motion.
Keywords: extremal processes, weak limit theorems, ruin probability.
Received: 11.08.2003
Revised: 15.04.2005
English version:
Theory of Probability and its Applications, 2007, Volume 51, Issue 4, Pages 645–662
DOI: https://doi.org/10.1137/S0040585X97982694
Bibliographic databases:
Language: English
Citation: E. I. Pancheva, E. T. Kolkovska, P. K. Jordanova, “Random time-changed extremal processes”, Teor. Veroyatnost. i Primenen., 51:4 (2006), 752–772; Theory Probab. Appl., 51:4 (2007), 645–662
Citation in format AMSBIB
\Bibitem{PanKolJor06}
\by E.~I.~Pancheva, E.~T.~Kolkovska, P.~K.~Jordanova
\paper Random time-changed extremal processes
\jour Teor. Veroyatnost. i Primenen.
\yr 2006
\vol 51
\issue 4
\pages 752--772
\mathnet{http://mi.mathnet.ru/tvp23}
\crossref{https://doi.org/10.4213/tvp23}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2338065}
\zmath{https://zbmath.org/?q=an:1135.60030}
\elib{https://elibrary.ru/item.asp?id=9310060}
\transl
\jour Theory Probab. Appl.
\yr 2007
\vol 51
\issue 4
\pages 645--662
\crossref{https://doi.org/10.1137/S0040585X97982694}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251875600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38149007064}
Linking options:
  • https://www.mathnet.ru/eng/tvp23
  • https://doi.org/10.4213/tvp23
  • https://www.mathnet.ru/eng/tvp/v51/i4/p752
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:376
    Full-text PDF :184
    References:60
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024