|
Teoriya Veroyatnostei i ee Primeneniya, 1982, Volume 27, Issue 1, Pages 129–140
(Mi tvp2276)
|
|
|
|
This article is cited in 21 scientific papers (total in 21 papers)
On a constant arising in the asymtotic theory of symmetric groups
Zv. Ignatov Bulgaria
Abstract:
Let $x_1(g)\ge x_1(g)\ge\dots$ be the lengths of the cycles of the permutation $g\in S_n$
and
$$
\widetilde\Sigma=\{(\sigma_1,\sigma_2,\dots):\,\sigma_1\ge\sigma_2\ge\dots,\ \sigma_1+\sigma_2+\dots=1\}
$$
The uniform probability distribution on $S_n$ and the map
$$
S_n\to\widetilde\Sigma:\,g\to(n^{-1}x_1(g),\,n^{-1}x_2(g),\dots)
$$
generate a probability distribution on $\widetilde\Sigma$. We investigate some properties of this distribution
when $n\to\infty$. In particular, we prove that the constant introduced in [1], [2] coincides with the Euler constant.
Received: 14.01.1980
Citation:
Zv. Ignatov, “On a constant arising in the asymtotic theory of symmetric groups”, Teor. Veroyatnost. i Primenen., 27:1 (1982), 129–140; Theory Probab. Appl., 27:1 (1982), 136–147
Linking options:
https://www.mathnet.ru/eng/tvp2276 https://www.mathnet.ru/eng/tvp/v27/i1/p129
|
|